Current Biotechnology ›› 2025, Vol. 15 ›› Issue (1): 158-169.DOI: 10.19586/j.2095-2341.2024.0027
• Articles • Previous Articles Next Articles
Xinxiong LI1(
), Weixuan HONG2, Tianshun FENG3, Junwei FANG2, Hu ZHAO2, Chunhong XIAO2, Meiping WANG2(
)
Received:2024-02-20
Accepted:2024-07-02
Online:2025-01-25
Published:2025-03-07
Contact:
Meiping WANG
李新雄1(
), 洪伟煊2, 冯添顺3, 房俊伟2, 赵虎2, 肖春红2, 王梅平2(
)
通讯作者:
王梅平
作者简介:李新雄 E-mail: xx1129552947@163.com;
基金资助:CLC Number:
Xinxiong LI, Weixuan HONG, Tianshun FENG, Junwei FANG, Hu ZHAO, Chunhong XIAO, Meiping WANG. Pancreatic Cancer Risk Stratification and Prognostic Prediction Model Based on Aging-related Gene Characteristics[J]. Current Biotechnology, 2025, 15(1): 158-169.
李新雄, 洪伟煊, 冯添顺, 房俊伟, 赵虎, 肖春红, 王梅平. 基于衰老相关基因特征的胰腺癌风险分层及预后预测模型[J]. 生物技术进展, 2025, 15(1): 158-169.
| 1 | HUANG J, LOK V, NGAI C H, et al.. Worldwide burden of, risk factors for, and trends in pancreatic cancer[J]. Gastroenterology, 2021, 160(3): 744-754. |
| 2 | SIEGEL R L, MILLER K D, WAGLE N S, et al.. Cancer statistics, 2023[J]. Cancer J. Clin, 2023, 73(1): 17-48. |
| 3 | CALCINOTTO A, KOHLI J, ZAGATO E, et al.. Cellular senescence: aging, cancer, and injury[J]. Physiol. Rev., 2019, 99(2): 1047-1078. |
| 4 | SAUL D, KOSINSKY R L. Single-cell transcriptomics reveals the expression of aging- and senescence-associated genes in distinct cancer cell populations[J/OL]. Cells, 2021, 10(11): 3126[2024-03-12]. . |
| 5 | ZABRANSKY D J, JAFFEE E M, WEERARATNA A T. Shared genetic and epigenetic changes link aging and cancer[J]. Trends Cell Biol., 2022, 32(4): 338-350. |
| 6 | FANE M, WEERARATNA A T. How the ageing microenvironment influences tumour progression[J]. Nat. Rev. Cancer, 2020, 20(2): 89-106. |
| 7 | QUINN J J, CHANG H Y. Unique features of long non-coding RNA biogenesis and function[J]. Nat. Rev. Genet., 2016, 17(1): 47-62. |
| 8 | STATELLO L, GUO C J, CHEN L L, et al.. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat. Rev. Mol. Cell Biol., 2021, 22(2): 96-118. |
| 9 | HUARTE M. The emerging role of lncRNAs in cancer[J]. Nat. Med., 2015, 21(11): 1253-1261. |
| 10 | BHAN A, SOLEIMANI M, MANDAL S S. Long noncoding RNA and cancer: a new paradigm[J]. Cancer Res., 2017, 77(15): 3965-3981. |
| 11 | ROBLESS E E, HOWARD J A, CASARI I, et al.. Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer[J]. Cancer Lett., 2021, 501: 55-65. |
| 12 | LI D, HE J, QIAN X, et al.. The involvement of lncRNAs in the development and progression of pancreatic cancer[J]. Cancer Biol. Ther., 2017, 18(12): 927-936. |
| 13 | VIVIAN J, RAO A A, NOTHAFT F A, et al.. Toil enables reproducible, open source, big biomedical data analyses[J]. Nat. Biotechnol., 2017, 35(4): 314-316. |
| 14 | YU G, WANG L G, HAN Y, et al.. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics, 2012, 16(5): 284-287. |
| 15 | BRUNSON J C. Ggalluvial: layered grammar for alluvial plots[J/OL]. J. Open Source Softw., 2020, 5(49): 2017[2024-03-12]. . |
| 16 | NEWMAN A M, LIU C L, GREEN M R, et al.. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat. Meth., 2015, 12(5): 453-457. |
| 17 | BECHT E, GIRALDO N A, LACROIX L, et al.. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[J/OL]. Genome Biol., 2016, 17(1): 218[2024-03-12]. doi: 10.1186/s13059-016-1070-5 .. |
| 18 | HÄNZELMANN S, CASTELO R, GUINNEY J. GSVA gene set variation analysis for microarray and RNA-seq data[J/OL]. BMC Bioinform., 2013, 14: 7[2024-03-12]. . |
| 19 | LENZO F L, KATO S, PABLA S, et al.. Immune profiling and immunotherapeutic targets in pancreatic cancer[J/OL]. Ann. Transl. Med., 2021, 9(2): 119[2024-03-12]. . |
| 20 | PING H, JIA X, KE H. A novel ferroptosis-related lncRNAs signature predicts clinical prognosis and is associated with immune landscape in pancreatic cancer[J/OL]. Front. Genet., 2022, 13: 786689[2024-03-12]. . |
| 21 | KIRKEGÅRD J, MORTENSEN F V, HANSEN C P, et al.. Waiting time to surgery and pancreatic cancer survival: a nationwide population-based cohort study[J]. Eur. J. Surg. Oncol., 2019, 45(10): 1901-1905. |
| 22 | van der GEEST L G M, van EIJCK C H J, GROOT KOERKAMP B, et al.. Trends in treatment and survival of patients with nonresected, nonmetastatic pancreatic cancer: a population-based study[J]. Cancer Med., 2018, 7(10): 4943-4951. |
| 23 | YUAN J, DUAN F, ZHAI W, et al.. An aging-related gene signature-based model for risk stratification and prognosis prediction in breast cancer[J]. Int. J. Women Health, 2021, 13: 1053-1064. |
| 24 | WANG D, NING H, WU H, et al.. Construction and evaluation of a novel prognostic risk model of aging-related genes in bladder cancer[J]. Curr. Urol., 2023, 17(4): 236-245. |
| 25 | XU Q, CHEN Y. An aging-related gene signature-based model for risk stratification and prognosis prediction in lung adenocarcinoma[J/OL]. Front. Cell Dev. Biol., 2021, 9: 685379[2024-03-12]. . |
| 26 | 刘文增,胡渊,张彩.胰腺癌的肿瘤微环境及其免疫治疗研究进展[J].中国免疫学杂志,2018,34(12):1901-1906. |
| LIU W Z, HU Y, ZHANG C. Research progress in tumor microenvironment and immunotherapy of pancreatic cancer[J]. Chin. J. Immunol., 2018, 34(12): 1901-1906. | |
| 27 | TABIBZADEH S. Signaling pathways and effectors of aging[J]. Front. Biosci. Landmark Ed., 2021, 26(1): 50-96. |
| 28 | FLEMING T H, HUMPERT P M, NAWROTH P P, et al.. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review[J]. Gerontology, 2011, 57(5): 435-443. |
| 29 | WAGHELA B N, VAIDYA F U, RANJAN K, et al.. AGE-RAGE synergy influences programmed cell death signaling to promote cancer[J]. Mol. Cell. Biochem., 2021, 476(2): 585-598. |
| 30 | REN X, CHEN C, LUO Y, et al.. lncRNA-PLACT1 sustains activation of NF-κB pathway through a positive feedback loop with IκBα/E2F1 axis in pancreatic cancer[J/OL]. Mol. Cancer, 2020, 19(1): 35[2024-03-12]. . |
| 31 | LIN J, ZHAI S, ZOU S, et al.. Positive feedback between lncRNA FLVCR1-AS1 and KLF10 may inhibit pancreatic cancer progression via the PTEN/AKT pathway[J/OL]. J. Exp. Clin. Cancer Res., 2021, 40(1): 316[2024-03-12]. . |
| 32 | CHENG Q, OUYANG X, ZHANG R, et al.. Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression[J]. RNA Biol., 2020, 17(11): 1693-1706. |
| 33 | JIANG W, DU Y, ZHANG W, et al.. Construction of a prognostic model based on cuproptosis-related lncRNA signatures in pancreatic cancer[J/OL]. Can. J. Gastroenterol. Hepatol., 2022, 2022: 4661929[2024-03-12]. . |
| 34 | ZHAO K, LI X, SHI Y, et al.. A comprehensive analysis of pyroptosis-related lncRNAs signature associated with prognosis and tumor immune microenvironment of pancreatic adenocarcinoma[J/OL]. Front. Genet., 2022, 13: 899496[2024-03-12]. . |
| 35 | LI J, ZHANG J, TAO S, et al.. Prognostication of pancreatic cancer using the cancer genome atlas based ferroptosis-related long non-coding RNAs[J/OL]. Front. Genet., 2022, 13: 838021[2024-03-12]. . |
| 36 | JIAO Y, ZHOU J, JIN Y, et al.. Long non-coding RNA TDRKH-AS1 promotes colorectal cancer cell proliferation and invasion through the β-catenin activated Wnt signaling pathway[J/OL]. Front. Oncol., 2020, 10: 639[2024-03-12]. . |
| 37 | TAUBE J M, GALON J, SHOLL L M, et al.. Implications of the tumor immune microenvironment for staging and therapeutics[J]. Mod. Pathol., 2018, 31(2): 214-234. |
| 38 | LIN H J, LIU Y, CAROLAND K, et al.. Polarization of cancer-associated macrophages maneuver neoplastic attributes of pancreatic ductal adenocarcinoma[J/OL]. Cancers, 2023, 15(13): 3507[2024-03-12]. . |
| 39 | CHOUEIRY F, TOROK M, SHAKYA R, et al.. CD200 promotes immunosuppression in the pancreatic tumor microenvironment[J/OL]. J. Immunother. Cancer, 2020, 8(1): e000189[2024-03-12]. . |
| 40 | LIU S, ZHANG W, LIU K, et al.. CD160 expression on CD8+ T cells is associated with active effector responses but limited activation potential in pancreatic cancer[J]. Cancer Immunol. Immunother., 2020, 69(5): 789-797. |
| 41 | VONDERHEIDE R H, BAYNE L J. Inflammatory networks and immune surveillance of pancreatic carcinoma[J]. Curr. Opin. Immunol., 2013, 25(2): 200-205. |
| 42 | 陈俊俊,黄浩,刘颖婷,等.胰腺癌免疫微环境组织驻留CD103+CD8+T细胞浸润分布及其临床意义[J].中华肿瘤防治杂志,2022,29(23):1659-1667. |
| CHEN J J, HUANG H, LIU Y T, et al.. Infiltration of tissue-resident CD103+CD8+T cells in the tumor microenvironment of pancreatic cancer and its clinical significance[J]. Chin. J. Cancer Prev. Treat., 2022, 29(23): 1659-1667. | |
| 43 | CHIBAYA L, MURPHY K C, DEMARCO K D, et al.. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance[J]. Nat. Cancer, 2023, 4(6): 872-892. |
| [1] | Ziyi ZHANG-HUANG, Lisha HUANG, Yanqi LI, Chenlu XIONG, Ying YU, Fei XIE. Construction of a Breast Cancer Prognostic Model Based on Nicotine Metabolism Gene Signatures [J]. Current Biotechnology, 2025, 15(4): 735-742. |
| [2] | Xu ZHU, Yingnan ZHANG, Jinfa MA, Lihong SHI. The Role of Ptbp1 in T Cell Acute Lymphoblastic Leukemia Mice [J]. Current Biotechnology, 2025, 15(2): 341-348. |
| [3] | Jinqing ZHONG, Kun HU, Xiaoning GAO, Di FANG, Zehui SU, Siyu ZHANG, Chengwei HUANG. In vivo Study of p,p'-DDT Bioconcentration Kinetics in Chinese Mitten Crab Eriocheir sinensis [J]. Current Biotechnology, 2024, 14(5): 848-856. |
| [4] | Lingyue ZHENG, Jingwei WANG, Jingyuan TONG, Lihong SHI. The Establishment of A Novel Effective Method for the Enrichment of Murine Bone Marrow Erythroblastic Islands [J]. Current Biotechnology, 2024, 14(3): 466-472. |
| [5] | Lili SUN, Yuemaierabola ANWAIER, Fuzhong LIU, Yeerkenbieke BUERLAN, Ye DILINAER, Wenjia GUO. Construction of Prognostic Prediction Model of Breast Cancer Based on Tumor-associated Fibroblast Genes and Analysis of Immune Infiltration [J]. Current Biotechnology, 2024, 14(2): 312-322. |
| [6] | Ting XU, Jiahao SHEN, Kang ZHAO, Lu HUANG, Enhui DONG, Kexin ZENG, Xinwei BIAN, Minghui JI, Qin XU. Bacterial Signature for Prediction of Disease Type Based on Abundance of Ruminococcus [J]. Current Biotechnology, 2024, 14(2): 323-330. |
| [7] | Yuemaierabola ANWAIER, Yeerkenbieke BUERLAN, Lili SUN, Fuzhong LIU, Yeerxiati DILINAER, Wenjia GUO. Prognosis Prediction Model and Drug Sensitivity Analysis of Triple-negative Breast Cancer Based on m5C Related Genes [J]. Current Biotechnology, 2024, 14(1): 149-159. |
| [8] | Xin LIU, Hua LI, Lei QI, Lixia YANG, Yuexin YU, Lanju XU. Therapeutic Effect of Recombinant Collagen Gynecological Gel on Cervicitis in Rats [J]. Current Biotechnology, 2024, 14(1): 42-47. |
| [9] | Jiayuan JIAO, Jiuge XING, Baoshan CHAI. Research Progress on RET Oncogene in Thyroid Carcinoma [J]. Current Biotechnology, 2023, 13(6): 895-899. |
| [10] | Haitao CAO, Jing ZHU, Yunpeng MA, Xinghua CUI. Application of Machine Learning in Phenotypic Prediction of Gut Microbiota [J]. Current Biotechnology, 2023, 13(5): 671-680. |
| [11] | Haitao CAO, Jing ZHU, Haibo ZENG, Yanchen LIU. Research on Feature Selection of Gut Microbiota and Disease Prediction Model Based on Weighted Average [J]. Current Biotechnology, 2023, 13(5): 798-806. |
| [12] | Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish [J]. Current Biotechnology, 2023, 13(4): 485-491. |
| [13] | Jingjing FANG, Kunlun HUANG, Tao TONG. Research Progress on Experimental Models of Autism Spectrum Disorders [J]. Current Biotechnology, 2023, 13(4): 509-523. |
| [14] | Yunpeng MA, Jing ZHU, Xinghua CUI. Content Estimating of Microbial Dissolved Organic Carbon Based on Machine Learning [J]. Current Biotechnology, 2023, 13(4): 645-653. |
| [15] | Wei ZHANG, Hongfang WANG, Baohua XU. Overview of the Main Molecular Mechanisms of Biological Aging [J]. Current Biotechnology, 2023, 13(2): 228-233. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||