| 1 |
NISHINO K, NISHIDA A, INOUE R, et al.. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease[J]. J. Gastroenterol., 2018, 53(1): 95-106.
|
| 2 |
JIE Z, XIA H, ZHONG S L, et al.. The gut microbiome in atherosclerotic cardiovascular disease[J/OL]. Nat. Commun., 2017, 8: 845[2024-01-20]. .
|
| 3 |
DELEDDA A, ANNUNZIATA G, TENORE G C, et al.. Diet-derived antioxidants and their role in inflammation, obesity and gut microbiota modulation[J/OL]. Antioxid. Basel, 2021, 10(5): 708[2024-01-20]. .
|
| 4 |
计梦蕾,俞海国.微生物组学在免疫性疾病中的研究进展[J].中华实用儿科临床杂志,2019,34(17):1358-1360.
|
|
JI M L, YU H G. Study progress of microbiome in immune diseases[J]. Chin. J. Appl. Clin. Pediatr., 2019, 34(17): 1358-1360.
|
| 5 |
谢雅静,时晓敏,颜世敢,等.肠道菌群与精神类疾病相关性研究进展[J].中国药理学通报,2022,38(11):1617-1622.
|
|
XIE Y J, SHI X M, YAN S G, et al.. Progress on correlation between intestinal flora and mental diseases[J]. Chin. Pharmacol. Bull., 2022, 38(11): 1617-1622.
|
| 6 |
LOOMBA R, SEGURITAN V, LI W, et al.. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab., 2017, 25(5): 1054-1062.
|
| 7 |
张昕雨,张璟,朱小强,等.基于宏基因组学分析构建诊断大肠癌的肠道菌群标签[J].上海交通大学学报(医学版),2018,38(9):1019-1026.
|
|
ZHANG X Y, ZHANG J, ZHU X Q, et al.. Bacterial signatures for diagnosis of colorectal cancer by fecal metagenomics analysis[J]. J. Shanghai Jiaotong Univ. Med. Sci., 2018, 38(9): 1019-1026.
|
| 8 |
全睿琳.基于全国多中心前瞻性登记注册队列的动脉性肺动脉高压临床与预后预测研究[D].北京:中国医学科学院,2022.
|
| 9 |
MADILIGAMA A, VANDERVORT Z, KHAN A. Consecutive rate model for covid infections and deaths and prediction of level-off time[J]. ACS Omega, 2022, 7(51): 48059-48066.
|
| 10 |
吴桐,王鸿超,陆文伟,等.肥胖人群肠道菌群特征分析及机器学习模型[J].微生物学通报,2020,47(12):4328-4337.
|
|
WU T, WANG H C, LU W W, et al.. Characteristics of gut microbiota of obese people and machine learning model[J]. Microbiol. China, 2020, 47(12): 4328-4337.
|
| 11 |
ARUMUGAM M, RAES J, PELLETIER E, et al.. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473: 174-180.
|
| 12 |
LA REAU A J, SUEN G. The Ruminococci: key symbionts of the gut ecosystem[J]. J. Microbiol., 2018, 56(3): 199-208.
|
| 13 |
XU J, LIANG R, ZHANG W, et al.. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression[J]. J. Diabetes, 2020, 12(3): 224-236.
|
| 14 |
YANG J, WANG P, LIU T, et al.. Involvement of mucosal flora and enterochromaffin cells of the caecum and descending colon in diarrhoea-predominant irritable bowel syndrome[J/OL]. BMC Microbiol., 2021, 21(1): 316[2024-01-20]. .
|
| 15 |
崔小缓,蒋兴旺,张延平,等.咽喉反流性疾病患者肠道菌群变化的初步研究[J].听力学及言语疾病杂志,2021,29(3):282-288.
|
|
CUI X H, JIANG X W, ZHANG Y P, et al.. Intestinal microbiota analysis of patient with laryngopharyngeal reflux disease[J]. J. Audiol. Speech Pathol., 2021, 29(3): 282-288.
|
| 16 |
HSIEH C S, RENGARAJAN S, KAU A, et al.. Altered IgA response to gut bacteria is associated with childhood asthma in Peru [J]. J. Immunol., 2021, 207(2): 398-407.
|
| 17 |
AHN J R, LEE S H, KIM B, et al.. Ruminococcus gnavus ameliorates atopic dermatitis by enhancing Treg cell and metabolites in BALB/c mice[J/OL]. Pediatr. Allergy Immunol., 2022, 33(1): e13678[2024-01-20]. .
|
| 18 |
KIM J W, KWOK S K, CHOE J Y, et al.. Recent advances in our understanding of the link between the intestinal microbiota and systemic lupus erythematosus[J/OL]. Int. J. Mol. Sci., 2019, 20(19): 4871[2024-01-20]. .
|
| 19 |
CHEN M, XIE C R, SHI Y Z, et al.. Gut microbiota and major depressive disorder: a bidirectional Mendelian randomization[J]. J. Affect Disord., 2022, 316: 187-193.
|
| 20 |
LIÑARES-BLANCO J, FERNANDEZ-LOZANO C, SEOANE J A, et al.. Machine learning based microbiome signature to predict inflammatory bowel disease subtypes[J/OL]. Front. Microbiol., 2022, 13: 872671[2024-01-20]. .
|
| 21 |
BANG S, YOO D, KIM S J, et al.. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data[J/OL]. Sci. Rep., 2019, 9: 10189[2024-01-20]. .
|
| 22 |
李杰其,胡良兵.基于机器学习的设备预测性维护方法综述[J].计算机工程与应用,2020,56(21):11-19.
|
|
LI J Q, HU L B. Review of machine learning for predictive maintenance[J]. Comput. Eng. Appl., 2020, 56(21): 11-19.
|
| 23 |
李倩, 刘芸宏, 吴晓慧, 等. 基于决策树和Logistic回归预测出血性脑卒中手术后医院感染风险 [J]. 中华医院感染学杂志, 2021,31(23):3556-3561.
|
|
LI Q, LIU Y H, WU X H, et al.. A study on nosocomial infection risk of patients undergoing hemorrhagic stroke surgery based on decision tree and Logistic regression[J]. Chin. J. Nosocomiol., 2021, 31(23): 3556-3561.
|
| 24 |
李承圣,包绮晗,郝晓燕,等.基于随机森林算法的胰腺癌术后预测模型构建[J].吉林大学学报(医学版),2022,48(2):426-435.
|
|
LI C S, BAO Q H, HAO X Y, et al.. Establishment of prediction model for postoperative pancreatic cancer based on random forest algorithm[J]. J. Jilin Univ. Med. Ed., 2022, 48(2): 426-435.
|
| 25 |
叶琳,石胜源,罗铁清.AdaBoost算法在乳腺癌疾病预测中的研究[J].计算机时代,2021(7):61-64.
|
|
YE L, SHI S Y, LUO T Q. Study of AdaBoost algorithm application in breast cancer disease prediction[J]. Comput. Era, 2021(7): 61-64.
|
| 26 |
王新,王炯杰,王雷,等.基于CHAID决策树和Logistic回归的肺癌患者术后肺部并发症预测效果的研究[J].临床肿瘤学杂志,2021,26(10):898-902.
|
|
WANG X, WANG J J, WANG L, et al.. Prediction of postoperative pulmonary complications in patients with lung cancer based on CHAID decision tree and logistic regression[J]. Chin. Clin. Oncol., 2021, 26(10): 898-902.
|
| 27 |
李强,衣杨,吴忠道,等.基于机器学习的肠道菌群数据建模与分析研究综述[J].微生物学通报,2021,48(1):180-196.
|
|
LI Q, YI Y, WU Z D, et al.. Review of gut microbiome analysis prediction models and algorithms[J]. Microbiol. China, 2021, 48(1): 180-196.
|
| 28 |
WANG R, CAI L, ZHANG J, et al.. Prediction of acute respiratory distress syndrome in traumatic brain injury patients based on machine learning algorithms[J/OL]. Med. Kaunas, 2023, 59(1): 171[2024-01-20]. .
|
| 29 |
FRANZOSA E A, MCIVER L J, RAHNAVARD G, et al.. Species-level functional profiling of metagenomes and metatranscriptomes[J]. Nat. Meth., 2018, 15: 962-968.
|
| 30 |
BAMPTON P, DRAPER B. Effect of relaxation music on patient tolerance of gastrointestinal endoscopic procedures[J]. J. Clin. Gastroenterol., 1997, 25(1): 343-345.
|
| 31 |
LIPSCOMB C E. Medical subject headings (MeSH)[J]. Bull. Med. Libr. Assoc., 2000, 88(3): 265-266.
|
| 32 |
SUI W, WAN L H. Association between patient activation and medication adherence in patients with stroke: a cross-sectional study[J/OL]. Neurology, 2021, 12: 722711[2024-01-20]. .
|
| 33 |
SU Q, LIU Q, LAU R I, et al.. Faecal microbiome-based machine learning for multi-class disease diagnosis[J/OL]. Nat. Commun., 2022, 13: 6818[2024-01-20]. .
|
| 34 |
HENKE M T, KENNY D J, CASSILLY C D, et al.. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(26): 12672-12677.
|
| 35 |
JOOSSENS M, HUYS G, HUYS G, et al.. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives[J]. Gut, 2011, 60(5): 631-637.
|
| 36 |
YAN H, QIN Q, CHEN J, et al.. Gut microbiome alterations in patients with visceral obesity based on quantitative computed tomography[J/OL]. Cell Infect. Microbiol., 2021, 11: 823262[2024-01-20]. .
|
| 37 |
CERQUEIRA F M, PHOTENHAUER A L, DODEN H L, et al.. Sas20 is a highly flexible starch-binding protein in the Ruminococcus bromii cell-surface amylosome[J/OL]. J. Biol. Chem., 2022, 298(5): 101896[2024-03-19]. .
|
| 38 |
MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J/OL]. Nutrients, 2020, 12(4): 1107[2024-01-20]. .
|
| 39 |
沈倩, 张军. 丁酸盐在炎症性肠病中的作用研究进展[J]. 胃肠病学和肝病学杂志, 2022(5): 031.
|
|
SHEN Q, ZHANG J. Research progress on the role of butyrate in inflammatory bowel disease[J]. Chin. J. Gastroenterol. Hepatol., 2022 (5): 031.
|
| 40 |
SINGH V, LEE G, SON H, et al.. Butyrate producers, "The Sentinel of Gut": their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics[J/OL]. Front. Microbiol., 2022, 13: 1103836[2024-01-20]. .
|
| 41 |
PALACIOS T, VITETTA L, COULSON S, et al.. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia: a randomised controlled pilot study[J/OL]. Nutrients, 2020, 12(7): 2041[2024-01-20]. .
|
| 42 |
AHRENS A P, CULPEPPER T, SALDIVAR B, et al.. A six-day, lifestyle-based immersion program mitigates cardiovascular risk factors and induces shifts in gut microbiota, specifically Lachnospiraceae, Ruminococcaceae, Faecalibacterium prausnitzii: a pilot study[J/OL]. Nutrients, 2021, 13(10): 3459[2024-01-20]. .
|