Current Biotechnology ›› 2024, Vol. 14 ›› Issue (4): 668-675.DOI: 10.19586/j.2095-2341.2024.0058
• Articles • Previous Articles Next Articles
					
													Xingpeng DUAN1( ), Jingli LIU1, Che WANG2, Dejing SHANG1(
), Jingli LIU1, Che WANG2, Dejing SHANG1( )
)
												  
						
						
						
					
				
Received:2024-03-22
															
							
															
							
																	Accepted:2024-06-21
															
							
																	Online:2024-07-25
															
							
																	Published:2024-08-07
															
						Contact:
								Dejing SHANG   
													通讯作者:
					尚德静
							作者简介:段兴鹏 E-mail: duanxingpeng@ lnnu.edu.cn;
				
							基金资助:CLC Number:
Xingpeng DUAN, Jingli LIU, Che WANG, Dejing SHANG. Effects of Macrophage Scavenger Receptors and Toll-like Receptors on Ox-LDL Uptake and Inflammation[J]. Current Biotechnology, 2024, 14(4): 668-675.
段兴鹏, 刘景丽, 王澈, 尚德静. 巨噬细胞清道夫受体与Toll样受体对Ox-LDL摄取和炎症的影响[J]. 生物技术进展, 2024, 14(4): 668-675.
| 1 | DAVIS F M, GALLAGHER K A. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease[J]. Arterioscler. Thromb. Vasc. Biol., 2019, 39(4): 623-634. | 
| 2 | BOBRYSHEV Y V. Monocyte recruitment and foam cell formation in atherosclerosis[J]. Micron, 2006, 37(3): 208-222. | 
| 3 | CHISTIAKOV D A, BOBRYSHEV Y V, OREKHOV A N. Macrophage-mediated cholesterol handling in atherosclerosis[J]. J. Cell. Mol. Med., 2016, 20(1): 17-28. | 
| 4 | BARRETT T J. Macrophages in atherosclerosis regression[J]. Arterioscler. Thromb. Vasc. Biol., 2020, 40(1): 20-33. | 
| 5 | MUSHENKOVA N V, BEZSONOV E E, OREKHOVA V A, et al.. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development[J/OL]. Biomedicines, 2021, 9(8): 915[2024-03-10]. . | 
| 6 | TAYLOR P R, MARTINEZ-POMARES L, STACEY M, et al.. Macrophage receptors and immune recognition[J]. Annu. Rev. Immunol., 2005, 23: 901-944. | 
| 7 | COLLOT-TEIXEIRA S, MARTIN J, MCDERMOTT-ROE C, et al.. CD36 and macrophages in atherosclerosis[J]. Cardiovasc. Res., 2007, 75(3): 468-477. | 
| 8 | MUSHENKOVA N V, NIKIFOROV N G, MELNICHENKO A A, et al.. Functional phenotypes of intraplaque macrophages and their distinct roles in atherosclerosis development and atheroinflammation[J/OL]. Biomedicines, 2022, 10(2): 452[2024-03-10]. . | 
| 9 | KZHYSHKOWSKA J, NEYEN C, GORDON S. Role of macrophage scavenger receptors in atherosclerosis[J]. Immunobiology, 2012, 217(5): 492-502. | 
| 10 | ZANI I A, STEPHEN S L, MUGHAL N A, et al.. Scavenger receptor structure and function in health and disease[J]. Cells, 2015, 4(2): 178-201. | 
| 11 | DE BEER M C, ZHAO Z, WEBB N R, et al.. Lack of a direct role for macrosialin in oxidized LDL metabolism[J]. J. Lipid Res., 2003, 44(4): 674-685. | 
| 12 | YANG M, KHOLMUKHAMEDOV A, SCHULTE M L, et al.. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo [J]. Blood Adv., 2018, 2(21): 2848-2861. | 
| 13 | ACKERS I, SZYMANSKI C, DUCKETT K J, et al.. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis[J]. Cardiovasc. Pathol., 2018, 34: 1-8. | 
| 14 | LI C, CAI C, ZHENG X, et al.. Orientin suppresses oxidized low-density lipoproteins induced inflammation and oxidative stress of macrophages in atherosclerosis[J]. Biosci. Biotechnol. Biochem., 2020, 84(4): 774-779. | 
| 15 | NAGY L, TONTONOZ P, ALVAREZ J G, et al.. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma[J]. Cell, 1998, 93(2): 229-240. | 
| 16 | SHU H, PENG Y, HANG W, et al.. The role of CD36 in cardiovascular disease[J]. Cardiovasc. Res., 2022, 118(1): 115-129. | 
| 17 | LIU Q, FAN J, BAI J, et al.. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway[J/OL]. Sci. Rep., 2018, 8(1): 17347[2024-03-10]. . | 
| 18 | RAGHAVAN S, SINGH N K, GALI S, et al.. Protein kinase Cθ via activating transcription factor 2-mediated CD36 expression and foam cell formation of Ly6C(hi) cells contributes to atherosclerosis[J]. Circulation, 2018, 138(21): 2395-2412. | 
| 19 | AGRAWAL S, FEBBRAIO M, PODREZ E, et al.. Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development[J]. Circulation, 2007, 115(23): 2939-2947. | 
| 20 | CHEN Y, ZHANG J, CUI W, et al.. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate[J/OL]. J. Exp. Med., 2022, 219(6): e20211314[2024-03-10]. . | 
| 21 | SHEEDY F J, GREBE A, RAYNER K J, et al.. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation[J]. Nat. Immunol., 2013, 14(8): 812-820. | 
| 22 | PARK Y M. CD36, a scavenger receptor implicated in atherosclerosis[J/OL]. Exp. Mol. Med., 2014, 46(6): e99[2024-03-10]. . | 
| 23 | XU S, LI L, YAN J, et al.. CML/CD36 accelerates atherosclerotic progression via inhibiting foam cell migration[J]. Biomed. Pharmacother., 2018, 97: 1020-1031. | 
| 24 | CHEN Y, WANG X, BEN J, et al.. The di-leucine motif contributes to class a scavenger receptor-mediated internalization of acetylated lipoproteins[J]. Arterioscler. Thromb. Vasc. Biol., 2006, 26(6): 1317-1322. | 
| 25 | RICCI R, SUMARA G, SUMARA I, et al.. Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis[J]. Science, 2004, 306(5701): 1558-1561. | 
| 26 | WU X, CHENG B, GUO X, et al.. PPARα/γ signaling pathways are involved in Chlamydia pneumoniae-induced foam cell formation via upregulation of SR-A1 and ACAT1 and downregulation of ABCA1/G1[J/OL]. Microb. Pathog., 2021, 161(Pt B): 105284[2024-03-10]. . | 
| 27 | YANG M Y, HUANG C N, CHAN K C, et al.. Mulberry leaf polyphenols possess antiatherogenesis effect via inhibiting LDL oxidation and foam cell formation[J]. J. Agric. Food Chem., 2011, 59(5): 1985-1995. | 
| 28 | DAI X Y, CAI Y, MAO D D, et al.. Increased stability of phosphatase and tensin homolog by intermedin leading to scavenger receptor A inhibition of macrophages reduces atherosclerosis in apolipoprotein E-deficient mice[J]. J. Mol. Cell. Cardiol., 2012, 53(4): 509-520. | 
| 29 | SHEN W, ANWAIER G, CAO Y, et al.. Atheroprotective mechanisms of tilianin by inhibiting inflammation through down-regulating NF-κB pathway and foam cells formation[J/OL]. Front. Physiol., 2019, 10: 825[2024-03-10]. . | 
| 30 | YU X, YI H, GUO C, et al.. Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6[J]. J. Biol. Chem., 2011, 286(21): 18795-18806. | 
| 31 | CHEN Y, WERMELING F, SUNDQVIST J, et al.. A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses[J]. Eur. J. Immunol., 2010, 40(5): 1451-1460. | 
| 32 | QIAN L, LI X, FANG R, et al.. Class A scavenger receptor deficiency augments angiotensin Ⅱ-induced vascular remodeling[J]. Biochem. Pharmacol., 2014, 90(3): 254-264. | 
| 33 | SUN S C. The noncanonical NF-κB pathway[J]. Immunol. Rev., 2012, 246(1): 125-140. | 
| 34 | ZONG G, ZHU Y, ZHANG Y, et al.. SR-A1 suppresses colon inflammation and tumorigenesis through negative regulation of NF-κB signaling[J]. Biochem. Pharmacol., 2018, 154: 335-343. | 
| 35 | LINARES-ALCÁNTARA E, MENDLOVIC F. Scavenger receptor A1 signaling pathways affecting macrophage functions in innate and adaptive immunity[J]. Immunol. Invest., 2022, 51(6): 1725-1755. | 
| 36 | ONYISHI C U, DESANTI G E, WILKINSON A L, et al.. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen[J/OL]. Nat. Commun., 2023, 14(1): 4895[2024-06-05]. . | 
| 37 | DUNN S, VOHRA R S, MURPHY J E, et al.. The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease[J]. Biochem. J., 2008, 409(2): 349-355. | 
| 38 | PIRILLO A, NORATA G D, CATAPANO A L. LOX-1, ox-LDL, and atherosclerosis[J/OL]. Mediators Inflamm., 2013, 2013: 152786[2024-06-05]. . | 
| 39 | KUME N, KITA T. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis[J]. Trends Cardiovasc. Med., 2001, 11(1): 22-25. | 
| 40 | KATAOKA H, KUME N, MIYAMOTO S, et al.. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions[J]. Circulation, 1999, 99(24): 3110-3117. | 
| 41 | KATTOOR A J, GOEL A, MEHTA J L. LOX-1: regulation, signaling and its role in atherosclerosis[J/OL]. Antioxidants, 2019, 8(7): 218[2024-06-05]. . | 
| 42 | MITRA S, KHAIDAKOV M, LU J, et al.. Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation[J]. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(2): 506-513. | 
| 43 | STANCEL N, CHEN C C, KE L Y, et al.. Interplay between CRP, atherogenic LDL, and LOX-1 and its potential role in the pathogenesis of atherosclerosis[J]. Clin. Chem., 2016, 62(2): 320-327. | 
| 44 | FENG Y, CAI Z R, TANG Y, et al.. TLR4/NF-κB signaling pathway-mediated and oxLDL-induced up-regulation of LOX-1, MCP-1, and VCAM-1 expressions in human umbilical vein endothelial cells[J]. Genet. Mol. Res., 2014, 13(1): 680-695. | 
| 45 | LI D, SINGH R M, LIU L, et al.. Oxidized-LDL through LOX-1 increases the expression of angiotensin converting enzyme in human coronary artery endothelial cells[J]. Cardiovasc. Res., 2003, 57(1): 238-243. | 
| 46 | BAGHERI B, KHATIBIYAN FEYZABADI Z, NOURI A, et al.. Atherosclerosis and toll-like receptor 4 (TLR4), lectin-like oxidized low-density lipoprotein-1 (LOX-1), and proprotein convertase subtilisin/kexin type9 (PCSK9)[J/OL]. Mediat. Inflamm., 2024, 2024: 5830491[2024-06-05]. . | 
| 47 | MULLICK A E, TOBIAS P S, CURTISS L K. Modulation of atherosclerosis in mice by Toll-like receptor 2[J]. J. Clin. Invest., 2005, 115(11): 3149-3156. | 
| 48 | CURTISS L K, BLACK A S, BONNET D J, et al.. Atherosclerosis induced by endogenous and exogenous toll-like receptor TLR1 or TLR6 agonists[J]. J. Lipid Res., 2012, 53(10): 2126-2132. | 
| 49 | MICHELSEN K S, WONG M H, SHAH P K, et al.. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E[J]. Proc. Natl. Acad. Sci. USA, 2004, 101(29): 10679-10684. | 
| 50 | ISHIBASHI M, SAYERS S, D'ARMIENTO J M, et al.. TLR3 deficiency protects against collagen degradation and medial destruction in murine atherosclerotic plaques[J]. Atherosclerosis, 2013, 229(1): 52-61. | 
| 51 | SALAGIANNI M, GALANI I E, LUNDBERG A M, et al.. Toll-like receptor 7 protects from atherosclerosis by constraining "inflammatory" macrophage activation[J]. Circulation, 2012, 126(8): 952-962. | 
| 52 | KOULIS C, CHEN Y C, HAUSDING C, et al.. Protective role for Toll-like receptor-9 in the development of atherosclerosis in apolipoprotein E-deficient mice[J]. Arterioscler. Thromb. Vasc. Biol., 2014, 34(3): 516-525. | 
| 53 | KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat. Immunol., 2010, 11(5): 373-384. | 
| 54 | ROWE D C, MCGETTRICK A F, LATZ E, et al.. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction[J]. Proc. Natl. Acad. Sci. USA, 2006, 103(16): 6299-6304. | 
| 55 | MEDZHITOV R. Toll-like receptors and innate immunity[J]. Nat. Rev. Immunol., 2001, 1(2): 135-145. | 
| 56 | KANTERS E, PASPARAKIS M, GIJBELS M J, et al.. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice[J]. J. Clin. Invest., 2003, 112(8): 1176-1185. | 
| 57 | ZENG X, GUO R, DONG M, et al.. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression[J/OL]. J. Transl. Med., 2018, 16(1): 106[2024-06-05]. . | 
| 58 | MENDEL I, FEIGE E, YACOV N, et al.. VB-201, an oxidized phospholipid small molecule, inhibits CD14- and Toll-like receptor-2-dependent innate cell activation and constrains atherosclerosis[J]. Clin. Exp. Immunol., 2014, 175(1): 126-137. | 
| 59 | STEWART C R, STUART L M, WILKINSON K, et al.. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer[J]. Nat. Immunol., 2010, 11(2): 155-161. | 
| 60 | HCHOI S, YIN H, RAVANDI A, et al.. Polyoxygenated cholesterol ester hydroperoxide activates TLR4 and SYK dependent signaling in macrophages[J/OL]. PLoS ONE, 2013, 8(12): e83145[2024-06-05]. . | 
| 61 | HILGENDORF I, EISELE S, REMER I, et al.. The oral spleen tyrosine kinase inhibitor fostamatinib attenuates inflammation and atherogenesis in low-density lipoprotein receptor-deficient mice[J]. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9): 1991-1999. | 
| 62 | BAHRAMI A, PARSAMANESH N, ATKIN S L, et al.. Effect of statins on toll-like receptors: a new insight to pleiotropic effects[J]. Pharmacol. Res., 2018, 135: 230-238. | 
| 63 | LU Z, ZHANG X, LI Y, et al.. TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice[J]. J. Endocrinol., 2013, 216(1): 61-71. | 
| 64 | GELOEN A, HELIN L, GEERAERT B, et al.. CD36 inhibitors reduce postprandial hypertriglyceridemia and protect against diabetic dyslipidemia and atherosclerosis[J/OL]. PLoS ONE, 2012, 7(5): e37633[2024-06-05]. . | 
| 65 | YUASA-KAWASE M, MASUDA D, YAMASHITA T, et al.. Patients with CD36 deficiency are associated with enhanced atherosclerotic cardiovascular diseases[J]. J. Atheroscler. Thromb., 2012, 19(3): 263-275. | 
| 66 | YANG K, ZHANG X J, CAO L J, et al.. Toll-like receptor 4 mediates inflammatory cytokine secretion in smooth muscle cells induced by oxidized low-density lipoprotein[J/OL]. PLoS ONE, 2014, 9(4): e95935[2024-06-05]. . | 
| 67 | ABDULAHAD D A, WESTRA J, LIMBURG P C, et al.. HMGB1 in systemic lupus erythematosus: its role in cutaneous lesions development[J]. Autoimmun. Rev., 2010, 9(10): 661-665. | 
| 68 | TIAN K, OGURA S, LITTLE P J, et al.. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives[J]. Ann. NY Acad. Sci., 2019, 1443(1): 34-53. | 
| 69 | DING Z, LIU S, WANG X, et al.. Lectin-like ox-LDL receptor-1 (LOX-1)-Toll-like receptor 4 (TLR4) interaction and autophagy in CATH.a differentiated cells exposed to angiotensin Ⅱ[J]. Mol. Neurobiol., 2015, 51(2): 623-632. | 
| 70 | LIN Y F, LI M H, HUANG R H, et al.. GP73 enhances the ox-LDL-induced inflammatory response in THP-1 derived macrophages via affecting NLRP3 inflammasome signaling[J/OL]. Int. J. Cardiol., 2023, 387: 131109[2024-06-05]. . | 
| 71 | MA C, LI Y, TIAN M, et al.. Gsα regulates macrophage foam cell formation during atherosclerosis[J]. Circ. Res., 2024, 134(7): 34-51. | 
| 72 | JIA Z, ZHANG X, LI Z, et al.. Hydrogen sulfide mitigates ox-LDL-induced NLRP3/caspase-1/GSDMD dependent macrophage pyroptosis by S-sulfhydrating caspase-1[J/OL]. Mol. Med. Rep., 2024, 30(2): 135[2024-06-05]. . | 
| [1] | Yimiao ZHANG, Yuqin BIAN, Xinbo LIU, Jiahe PANG, Tongxuan SUN, Qiazheng DU, Wenhao XU, Tianze YIN, Hongshu SUI. Research Progress on the Cytotoxicity and Immune Effects of Carbon-based Nanomaterials [J]. Current Biotechnology, 2025, 15(4): 615-621. | 
| [2] | Xiaoyu JIANG, Yi CHEN, Jingjing NI. Mechanism of miR-93 Regulating Immune-mediated Traumatic Brain Injury Through Activation of PI3K/AKT Pathway [J]. Current Biotechnology, 2025, 15(4): 711-719. | 
| [3] | Yu DING, Bo ZHAO, Jin ZHANG, Xudong GAO. The Role of SIRT1 Deacetylation Modification in Regulating HMGB1-mediated Pyroptosis in Chronic Sinusitis with Nasal Polyps [J]. Current Biotechnology, 2025, 15(3): 535-543. | 
| [4] | Ruoliu ZHANG, Mingwei BAO. Research Progress on the Role of Toll-like Receptor 7 in Cardiovascular Diseases [J]. Current Biotechnology, 2025, 15(2): 247-253. | 
| [5] | Hao LIU, Xiang LI. Research Progress on Pathogenic Mechanisms and Treatment Strategy of Coronary Artery Disease [J]. Current Biotechnology, 2025, 15(2): 254-262. | 
| [6] | Jianhong YANG, Boyan LIU, Jun CHEN, Zhihui QIU, Baoqiang LI, Shucun QIN, Yandong NIU, Lei HE. Effects of Pre-treatment of Nanobubble Hydrogen Water on the Mouse Psoriasis Induction by Imiquimod [J]. Current Biotechnology, 2024, 14(4): 676-684. | 
| [7] | Zhaoqing XI, Mingwei BAO. Research Progress on Glycolipid Metabolism Reprogramming of Macrophage in Non-alcoholic Fatty Liver Disease [J]. Current Biotechnology, 2024, 14(3): 399-405. | 
| [8] | Yipeng LIANG, Di WANG, Haoze SONG, Lihong SHI, Jingyuan TONG. Identification of Immunoregulatory Factors in the Development of Myeloproliferative Neoplasms by Bioinformatics [J]. Current Biotechnology, 2024, 14(3): 492-500. | 
| [9] | Xuesheng FANG, Mingwei BAO. Research Advances of POSTN in Cardiovascular Diseases [J]. Current Biotechnology, 2023, 13(5): 725-729. | 
| [10] | Jingyi ZHANG, Xue JIANG, Siyu MA, Zhichao FENG, Yang YI, Chen MA, Yifei SONG, Fei XIE. Research Progress on the Protective Effects of Hydrogen Gas on Traumatic Brain Injury [J]. Current Biotechnology, 2023, 13(2): 234-239. | 
| [11] | Yanyi LI, Na LYU, Jinli CHEN, Xiao LI, Weiting ZHANG, Hongxia ZHANG. Progress on the Mechanism of Soybean Protein Derived Peptides Regulating Glucose and Lipid Metabolism [J]. Current Biotechnology, 2022, 12(6): 853-860. | 
| [12] | Jun CHEN, Shucun QIN, Lei HE. Inhibiting Effect of Hydrogen-rich Saline on Psoriasis in Imiquimod-induced Mouse Models [J]. Current Biotechnology, 2022, 12(4): 503-509. | 
| [13] | Li GAO, Lei YANG, Guangpeng LI. Research Progress on the Mechanism of Skeletal Muscle Development Stimulated by Myostatin Gene Mutation [J]. Current Biotechnology, 2021, 11(4): 476-482. | 
| [14] | YUAN Qifeng, YAO Baozhen*. Progress of Abnormal Glutamate-glutamine Cycle in Autism Spectrum Disorders [J]. Curr. Biotech., 2021, 11(2): 170-175. | 
| [15] | OUYANG Man. Mechanism Progress on Fibroblast Growth Factor 21 Analogue Treating Atherosclerosis [J]. Curr. Biotech., 2020, 10(5): 463-469. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||