Current Biotechnology ›› 2025, Vol. 15 ›› Issue (2): 254-262.DOI: 10.19586/j.2095-2341.2024.0151
• Reviews • Previous Articles Next Articles
Received:2024-09-18
															
							
															
							
																	Accepted:2024-12-27
															
							
																	Online:2025-03-25
															
							
																	Published:2025-04-29
															
						Contact:
								Xiang LI   
													通讯作者:
					李响
							作者简介:刘昊 E-mail: helenliuhao9@163.com;
				
							基金资助:CLC Number:
Hao LIU, Xiang LI. Research Progress on Pathogenic Mechanisms and Treatment Strategy of Coronary Artery Disease[J]. Current Biotechnology, 2025, 15(2): 254-262.
刘昊, 李响. 冠状动脉疾病发病机制及治疗策略研究进展[J]. 生物技术进展, 2025, 15(2): 254-262.
| 1 | World Health Organization. The Top 10 causes of death[EB/OL]. (2024-08-07)[2024-08-07]. . | 
| 2 | KHAIR M, KHAIR M, VANGAVETI V N, et al.. The role of the NLRP3 inflammasome in atherosclerotic disease: systematic review and meta-analysis[J]. J. Cardiol., 2024, 84(1): 14-21. | 
| 3 | Centers for Disease Control and Prevention (CDC). Heart Disease Facts[EB/OL]. (2024-02-01) [2025-01-10]. . | 
| 4 | WANG R, WANG Y, LU J, et al.. Forecasting cardiovascular disease risk and burden in China from 2020 to 2030: a simulation study based on a nationwide cohort[J]. Heart, 2025, 111(5): 205-211. | 
| 5 | RICKARD J, KRISHNASWAMY A, et al.. National trends in cardiovascular-related hospitalizations and costs: 2016-2021[J]. Am. J. Cardiol., 2024, doi:10.1016/j.amjcard.2024.03.01[2025-01-10]. . | 
| 6 | American Heart Association. Forecasting the burden and economic costs of cardiovascular disease and stroke in the United States through 2050. Circulation, 2024.[EB/OL]. (2024-02-01) [2025-01-10].. | 
| 7 | KHERA A V, KATHIRESAN S. Genetics of coronary artery disease: discovery, biology and clinical translation[J]. Nat. Rev. Genet., 2017, 18(6): 331-344. | 
| 8 | LIBBY P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855): 524-533. | 
| 9 | MILUTINOVIĆ A, ŠUPUT D, ZORC-PLESKOVIČ R. Pathogenesis of atherosclerosis in the Tunica intima, media, and adventitia of coronary arteries: an updated review[J]. Bosn. J. Basic Med. Sci., 2020, 20(1): 21-30. | 
| 10 | ASKIN L, DUMAN H, OZYıLDıZ A, et al.. Association between omentin-1 and coronary artery disease: pathogenesis and clinical research[J]. Curr. Cardiol. Rev., 2020, 16(3): 198-201. | 
| 11 | 吴立玲.心血管病理生理学[M].北京:北京医科大学出版社,2000. | 
| 12 | MOORE K J, TABAS I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3): 341-355. | 
| 13 | NAKASHIMA Y, WIGHT T N, SUEISHI K. Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans[J]. Cardiovasc. Res., 2008, 79(1): 14-23. | 
| 14 | WANG H, LIU Z, SHAO J, et al.. Pathogenesis of premature coronary artery disease: focus on risk factors and genetic variants[J]. Genes Dis., 2022, 9(2): 370-380. | 
| 15 | KRYCZKA K E, KRUK M, DEMKOW M, et al.. Fibrinogen and a triad of thrombosis, inflammation, and the renin-angiotensin system in premature coronary artery disease in women: a new insight into sex-related differences in the pathogenesis of the disease[J/OL]. Biomolecules, 2021, 11(7): 1036[2024-12-01]. . | 
| 16 | KARIMABAD M N, KOUNIS N G, HASSANSHAHI G, et al.. The involvement of CXC motif chemokine ligand 10 (CXCL10) and its related chemokines in the pathogenesis of coronary artery disease and in the COVID-19 vaccination: a narrative review[J/OL]. Vaccines Basel., 2021, 9(11): 1224[2024-12-01]. . | 
| 17 | KOLOGRIVOVA I V, NARYZHNAYA N V, KOSHELSKAYA O A, et al.. Association of epicardial adipose tissue adipocytes hypertrophy with biomarkers of low-grade inflammation and extracellular matrix remodeling in patients with coronary artery disease[J/OL]. Biomedicines, 2023, 11(2): 241[2024-12-01]. . | 
| 18 | PACKER M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium[J]. J. Am. Coll. Cardiol., 2018, 71(20): 2360-2372. | 
| 19 | MANCIO J, AZEVEDO D, SARAIVA F, et al.. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis[J]. Eur. Heart J. Cardiovasc. Imaging, 2018, 19(5): 490-497. | 
| 20 | GIMBRONE M A, GARCÍA-CARDEÑA G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ. Res., 2016, 118(4): 620-636. | 
| 21 | BADIMON L, SUADES R, FUENTES E, et al.. Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets: a link between inflammation, atherosclerosis, and thrombosis[J/OL]. Front. Pharmacol, 2016, 7: 293[2024-12-01]. . | 
| 22 | JUNG R G, SIMARD T, LABINAZ A, et al.. Role of plasminogen activator inhibitor-1 in coronary pathophysiology[J]. Thromb. Res., 2018, 164: 54-62. | 
| 23 | ZHANG F, LIU J, LI S F, et al.. Angiotensin-(1-7): new perspectives in atherosclerosis treatment[J]. J. Geriatr. Cardiol., 2015, 12(6): 676-682. | 
| 24 | BROWN N J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis[J]. Nat. Rev. Nephrol., 2013, 9(8): 459-469. | 
| 25 | FÖRSTERMANN U, XIA N, LI H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis[J]. Circ. Res., 2017, 120(4): 713-735. | 
| 26 | NOMURA C H, ASSUNCAO-JR A N, GUIMARÃES P O, et al.. Association between perivascular inflammation and downstream myocardial perfusion in patients with suspected coronary artery disease[J]. Eur. Heart J. Cardiovasc. Imag., 2020, 21(6): 599-605. | 
| 27 | KESSLER T, SCHUNKERT H. Coronary artery disease genetics enlightened by genome-wide association studies[J]. JACC Basic Transl. Sci., 2021, 6(7): 610-623. | 
| 28 | PATEL A P, WANG M, RUAN Y, et al.. A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease[J]. Nat. Med., 2023, 29(7): 1793-1803. | 
| 29 | HU L, SU G, WANG X. The roles of ANRIL polymorphisms in coronary artery disease: a meta-analysis[J/OL]. Biosci. Rep., 2019, 39(12): BSR20181559[2024-12-01]. . | 
| 30 | LI X, LIN Y, ZHANG R. Associations between endothelial nitric oxide synthase gene polymorphisms and the risk of coronary artery disease: a systematic review and meta-analysis of 132 case-control studies[J]. Eur. J. Prev. Cardiol., 2019, 26(2): 160-170. | 
| 31 | HOSSEINI D K, ATAIKIA S, HOSSEINI H K, et al.. Association of polymorphisms in ADAMTS-7 gene with the susceptibility to coronary artery disease-a systematic review and meta-analysis[J]. Aging Albany NY, 2020, 12(20): 20915-20923. | 
| 32 | HUANG R, ZHAO S R, LI Y, et al.. Association of tumor necrosis factor-α gene polymorphisms and coronary artery disease susceptibility: a systematic review and meta-analysis[J/OL]. BMC Med. Genet., 2020, 21(1): 29[2024-12-01]. . | 
| 33 | LI Y, YUAN H P, SON L, et al..beta(2)-adrenergic receptor gene polymorphisms are associated with cardiovascular events but not all-cause mortality in coronary artery disease patients: a meta-analysis of prospective studies[J]. Genet. Test Mol. Biomarkers,2019,23:124-137. | 
| 34 | JIANG J, CHEN X, LI C, et al.. Polymorphisms of TRIB1 genes for coronary artery disease and stroke risk: a systematic review and meta-analysis[J/OL]. Gene, 2023, 880: 147613[2024-12-01]. . | 
| 35 | RAI H, FITZGERALD S, COUGHLAN J J, et al.. Glu298Asp variant of the endothelial nitric oxide synthase gene and acute coronary syndrome or premature coronary artery disease: a systematic review and meta-analysis[J]. Nitric Oxide, 2023, 138: 85-95. | 
| 36 | LI Y Y, WANG H, ZHANG Y Y. Macrophage migration inhibitory factor gene rs755622 G/C polymorphism and coronary artery disease: a meta-analysis of 8, 488 participants[J/OL]. Cardiovasc. Med., 2022, 9: 959028[2024-12-01]. . | 
| 37 | LI Y Y, WANG H, YANG X X, et al.. PCSK9 gene E670G polymorphism and coronary artery disease: an updated meta-analysis of 5, 484 subjects[J/OL]. Cardiovasc Med., 2020, 7: 582865[2024-12-01]. . | 
| 38 | NAKATOCHI M, ICHIHARA S, YAMAMOTO K, et al.. Epigenome-wide association study suggests that SNPs in the promoter region of RETN influence plasma resistin level via effects on DNA methylation at neighbouring sites[J]. Diabetologia, 2015, 58(12): 2781-2790. | 
| 39 | FERNÁNDEZ-SANLÉS A, SAYOLS-BAIXERAS S, SUBIRANA I, et al.. Association between DNA methylation and coronary heart disease or other atherosclerotic events: a systematic review[J]. Atherosclerosis, 2017, 263: 325-333. | 
| 40 | DU P, GAO K, CAO Y, et al.. RFX1 downregulation contributes to TLR4 overexpression in CD14+ monocytes via epigenetic mechanisms in coronary artery disease[J/OL]. Clin. Epigenet., 2019, 11(1): 44[2024-12-01]. . | 
| 41 | LIU W, LING S, SUN W, et al.. Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients[J/OL]. Sci. Rep., 2015, 5: 16099[2024-12-01]. . | 
| 42 | MEDER B, HAAS J, SEDAGHAT-HAMEDANI F, et al.. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure[J]. Circulation, 2017, 136(16): 1528-1544. | 
| 43 | SCHIANO C, VIETRI M T, GRIMALDI V, et al.. Epigenetic-related therapeutic challenges in cardiovascular disease[J]. Trends Pharmacol. Sci., 2015, 36(4): 226-235. | 
| 44 | KINOSHITA D, SUZUKI K, YUKI H, et al.. Coronary artery disease reporting and data system (CAD-RADS), vascular inflammation and plaque vulnerability[J]. J. Cardiovasc. Comput. Tomogr., 2023, 17(6): 445-452. | 
| 45 | SUN M, ZHU S, WANG Y, et al.. Effect of inflammation on association between cancer and coronary artery disease[J/OL]. BMC Cardiovasc. Disord., 2024, 24(1): 72[2024-12-01]. . | 
| 46 | ZHU Q, WU Y, MAI J, et al.. Comprehensive metabolic profiling of inflammation indicated key roles of glycerophospholipid and arginine metabolism in coronary artery disease[J/OL]. Front. Immunol., 2022, 13: 829425[2024-12-01]. . | 
| 47 | FOLDYNA B, MAYRHOFER T, ZANNI M V, et al.. Pericoronary adipose tissue density, inflammation, and subclinical coronary artery disease among people with HIV in the REPRIEVE cohort[J]. Clin. Infect. Dis., 2023, 77(12): 1676-1686. | 
| 48 | GHALANDARI M, JAMIALAHMADI K, NIK M M, et al.. Association of Interleukin-10 -592 C > A gene polymorphism with coronary artery disease: a case-control study and meta-analysis[J/OL]. Cytokine,2021,139:155403[2024-12-01]. . | 
| 49 | RATH D, RAPP V, SCHWARTZ J, et al.. Homophilic interaction between transmembrane-JAM-A and soluble JAM-a regulates thrombo-inflammation: implications for coronary artery disease[J]. JACC Basic Transl. Sci., 2022, 7(5): 445-461. | 
| 50 | BAGYURA Z, KISS L, LUX Á, et al.. Neutrophil-to-lymphocyte ratio is an independent risk factor for coronary artery disease in central obesity[J/OL]. Int. J. Mol. Sci., 2023, 24(8): 7397[2024-12-01]. . | 
| 51 | YUAN S, CARTER P, MASON A M, et al.. Genetic liability to rheumatoid arthritis in relation to coronary artery disease and stroke risk[J]. Arthritis Rheumatol., 2022, 74(10): 1638-1647. | 
| 52 | ZHUANG P, LIU X, LI Y, et al.. Circulating fatty acids, genetic risk, and incident coronary artery disease: A prospective, longitudinal cohort study[J/OL].Sci. Adv.,2023,9:eadf9037[2024-12-01]. . | 
| 53 | CHEN Y, LIAO Y, SUN S, et al.. Stratified meta-analysis by ethnicity revealed that ADRB3 Trp64Arg polymorphism was associated with coronary artery disease in Asians, but not in Caucasians[J/OL]. Medicine (Baltimore), 2020, 99(4): e18914[2024-12-01]. . | 
| 54 | LIU H, CHEN X, HU X, et al.. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J/OL]. Microbiome, 2019, 7(1): 68[2024-12-01]. . | 
| 55 | ZUIN M, TRENTINI A, MARSILLACH J, et al.. Paraoxonase-1 (PON-1) arylesterase activity levels in patients with coronary artery disease: a meta-analysis[J/OL]. Dis. Markers, 2022, 2022: 4264314[2024-12-01]. . | 
| 56 | ZHENG J, LIU M, CHEN L, et al.. Association between serum adropin level and coronary artery disease: a systematic review and meta-analysis[J]. Cardiovasc. Diagn. Ther., 2019, 9(1): 1-7. | 
| 57 | RESHADMANESH T, BEHNOUSH A H, FARAJOLLAHI M, et al.. Circulating levels of calprotectin as a biomarker in patients with coronary artery disease: a systematic review and meta-analysis[J/OL]. Clin. Cardiol., 2024, 47(7): e24315[2024-12-01]. . | 
| 58 | ZHANG C Y, XU R Q, WANG X Q, et al.. Comprehensive transcriptomics and metabolomics analyses reveal that hyperhomocysteinemia is a high risk factor for coronary artery disease in a Chinese obese population aged 40-65: a prospective cross-sectional study[J/OL]. Cardiovasc. Diabetol., 2023, 22(1): 219[2024-12-01]. . | 
| 59 | SILVA S, FATUMO S, NITSCH D. Mendelian randomization studies on coronary artery disease: a systematic review and meta-analysis[J/OL]. Syst. Rev., 2024, 13(1): 29[2024-12-01]. . | 
| 60 | GISONDI P, FOSTINI A C, FOSSÀ I, et al.. Psoriasis and the metabolic syndrome[J]. Clin. Dermatol., 2018, 36(1): 21-28. | 
| 61 | PATRICK M T, LI Q, WASIKOWSKI R, et al.. Shared genetic risk factors and causal association between psoriasis and coronary artery disease[J/OL]. Nat. Commun., 2022, 13(1): 6565[2024-12-01]. . | 
| 62 | URBUT S M, YEUNG M W, KHURSHID S, et al.. MSGene: a multistate model using genetic risk and the electronic health record applied to lifetime risk of coronary artery disease[J/OL]. Nat. Commun., 2024, 15(1): 4884[2024-12-01]. . | 
| 63 | RAMÍREZ J, VAN DUIJVENBODEN S, YOUNG W J, et al.. Prediction of coronary artery disease and major adverse cardiovascular events using clinical and genetic risk scores for cardiovascular risk factors[J/OL]. Circ. Genom. Precis. Med., 2022, 15(5): e003441[2024-12-01]. . | 
| 64 | KAZI S, CHONG J J H, CHOW C K. Inflammation: the next target for secondary prevention in coronary artery disease[J]. Med. J. Aust., 2024, 220(3): 115-120. | 
| 65 | LEE Y J, HONG S J, KANG W C, et al.. Rosuvastatin versus atorvastatin treatment in adults with coronary artery disease: secondary analysis of the randomised LODESTAR trial[J/OL]. BMJ, 2023, 383: e075837[2024-12-01]. . | 
| 66 | LEE S J, LEE J B, YANG T H, et al.. Treat-to-target or high-intensity statin treatment in older adults with coronary artery disease: a post hoc analysis of the LODESTAR trial[J/OL]. Age Ageing, 2024, 53(7): afae132[2024-12-01]. . | 
| 67 | PAN J, PING P D, WANG W, et al.. Cost-effectiveness analysis of Shexiang Baoxin Pill (MUSKARDIA) as the add-on treatment to standard therapy for stable coronary artery disease in China[J/OL]. PLoS One, 2024, 19(3): e0299236[2024-12-01]. . | 
| 68 | BAI X, SHEN C, ZHANG W, et al.. Efficacy and risks of drug-coated balloon treatment for coronary artery disease: a meta-analysis[J/OL]. Heliyon, 2023, 9(11): e22224[2024-12-01]. . | 
| 69 | SCIAHBASI A, MAZZA T M, PIDONE C, et al.. A new frontier for drug-coated balloons: treatment of "de novo" stenosis in large vessel coronary artery disease[J/OL]. J. Clin. Med., 2024, 13(5): 1320[2024-12-01]. . | 
| 70 | DOENST T, THIELE H, HAASENRITTER J, et al.. The treatment of coronary artery disease[J]. Dtsch. Arztebl. Int., 2022, 119(42): 716-723. | 
| 71 | 李岩异, 吕娜, 陈金利, 等. 大豆蛋白源性肽调节糖脂代谢机制研究进展[J]. 生物技术进展, 2022, 12(6): 853-860. | 
| LI Y, LYU N, CHEN J L, et al.. Advances in mechanisms of soy protein-derived peptides in regulating glucose and lipid metabolism[J]. Curr. Biotechnol., 2022, 12(6): 853-860. | |
| 72 | QIN P, WANG T, LUO Y. A review on plant-based proteins from soybean: health benefits and soy product development[J/OL]. J. Agric. Food Res., 2022, 7: 100265[2024-12-01]. . | 
| 73 | 段兴鹏, 刘景丽, 王澈, 等. 巨噬细胞清道夫受体与Toll样受体对Ox-LDL摄取和炎症的影响[J]. 生物技术进展, 2024, 14(4): 668-675. | 
| DUAN X P, LIU J L, WANG C, et al.. Effects of macrophage scavenger receptors and Toll-like receptors on Ox-LDL uptake and inflammation[J]. Curr. Biotechnol., 2024, 14(4): 668-675. | |
| 74 | KUMAR M, ALI W, YADAV K, et al.. High-density lipoprotein-associated paraoxonase-1 (PON-1) and scavenger receptor class B type 1 (SRB-1) in coronary artery disease: correlation with disease severity[J/OL]. J. Clin. Med., 2024, 13(18): 5480[2024-12-01]. . | 
| 75 | 方学升, 包明威. 骨膜蛋白在心血管疾病中的研究进展[J]. 生物技术进展, 2023, 13(5): 725-729. | 
| FANG X S, BAO M W. Research progress of periostin in cardiovascular diseases[J]. Curr. Biotechnol., 2023, 13(5): 725-729. | |
| 76 | PADIAL-MOLINA M, GONZALEZ-PEREZ G, MARTIN-MORALES N, et al.. Periostin in the relation between periodontal disease and atherosclerotic coronary artery disease: a pilot randomized clinical study[J]. J. Periodontal. Res., 2024, 59(3): 446-457. | 
| 77 | 欧阳满. FGF21类似物治疗动脉粥样硬化机制研究进展[J]. 生物技术进展, 2020, 10(5): 463-469. | 
| OUYANG M. Research progress on the mechanism of FGF21 analogues in the treatment of atherosclerosis[J]. Curr. Biotechnol., 2020, 10(5): 463-469. | |
| 78 | SINHA S R, PRAKASH P, KESHARI J R, et al.. The correlation between serum fibroblast growth factor 21 and the severity and occurrence of coronary artery disease[J/OL]. Cureus, 2024, 16(1): e51924[2024-12-01]. . | 
| [1] | Xingpeng DUAN, Jingli LIU, Che WANG, Dejing SHANG. Effects of Macrophage Scavenger Receptors and Toll-like Receptors on Ox-LDL Uptake and Inflammation [J]. Current Biotechnology, 2024, 14(4): 668-675. | 
| [2] | Xuesheng FANG, Mingwei BAO. Research Advances of POSTN in Cardiovascular Diseases [J]. Current Biotechnology, 2023, 13(5): 725-729. | 
| [3] | Maolan XIONG, Siyan WEI, Juntao LUO, Bingshe HAN, Junfang ZHANG. The Effects of hdac11 Knockout of Zebrafish on Lipid Metabolism [J]. Current Biotechnology, 2023, 13(4): 588-595. | 
| [4] | Yanyi LI, Na LYU, Jinli CHEN, Xiao LI, Weiting ZHANG, Hongxia ZHANG. Progress on the Mechanism of Soybean Protein Derived Peptides Regulating Glucose and Lipid Metabolism [J]. Current Biotechnology, 2022, 12(6): 853-860. | 
| [5] | Chuancai LIANG, Peng YI, Bo QIU. Effects of AMPK/SIRT1/PPARγ/PGC1α Axis and Related Factors on Lipid Metabolism in Osteoarthritis [J]. Current Biotechnology, 2021, 11(6): 718-723. | 
| [6] | OUYANG Man. Mechanism Progress on Fibroblast Growth Factor 21 Analogue Treating Atherosclerosis [J]. Curr. Biotech., 2020, 10(5): 463-469. | 
| [7] | YU Shulong1, ZHANG Hao2, LI Cencen2*. Research Progress on Long Noncoding RNA in Regulating Fat Development and Metabolism [J]. Curr. Biotech., 2020, 10(4): 333-338. | 
| [8] | YUAN Xubing1,2, LIU Hongtao1*, DU Yuguang1*. Preparation of Chitosan Oligosaccharide and its Application in Medicine and Agricultural Production [J]. Curr. Biotech., 2018, 8(6): 461-468. | 
| [9] | LU Tengfei, PEI Wenhua, WU Yangnan, MA Yuehui*, GUAN Weijun*. Current Status of Vascular Stem/progenitor Cells [J]. Curr. Biotech., 2017, 7(3): 182-186. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
