Current Biotechnology ›› 2024, Vol. 14 ›› Issue (2): 211-220.DOI: 10.19586/j.2095-2341.2023.0149
• Reviews • Previous Articles Next Articles
Weijian ZHAO(
), Hongting XU, Xiangqian XIAO(
), Wang SHENG(
)
Received:2023-11-21
Accepted:2024-01-02
Online:2024-03-25
Published:2024-04-17
Contact:
Xiangqian XIAO,Wang SHENG
通讯作者:
肖向茜,盛望
作者简介:赵维坚 E-mail: zhaowj@emails.bjut.edu.cn
基金资助:CLC Number:
Weijian ZHAO, Hongting XU, Xiangqian XIAO, Wang SHENG. Research Progress on Hippo Signaling Pathway in Cancer Stem Cell[J]. Current Biotechnology, 2024, 14(2): 211-220.
赵维坚, 徐弘庭, 肖向茜, 盛望. 肿瘤干细胞中的Hippo信号通路研究进展[J]. 生物技术进展, 2024, 14(2): 211-220.
| 压力形式 | 对Hippo通路的影响 | 参考文献 |
|---|---|---|
| 缺氧应激 | 降低YAP磷酸化水平,促进YAP核定位 | [ |
| 氧化应激 | 促进YAP核定位 | [ |
| 热应激 | 诱导YAP去磷酸化和活化 | [ |
| 缺血性损伤 | 增加YAP的表达对组织缺血再灌注保护的反应 | [ |
| 高渗胁迫 | 诱导TAZ的酪氨酸磷酸化,TEAD细胞质定位 | [ |
Table 1 Effects of different stress methods on Hippo signal pathway
| 压力形式 | 对Hippo通路的影响 | 参考文献 |
|---|---|---|
| 缺氧应激 | 降低YAP磷酸化水平,促进YAP核定位 | [ |
| 氧化应激 | 促进YAP核定位 | [ |
| 热应激 | 诱导YAP去磷酸化和活化 | [ |
| 缺血性损伤 | 增加YAP的表达对组织缺血再灌注保护的反应 | [ |
| 高渗胁迫 | 诱导TAZ的酪氨酸磷酸化,TEAD细胞质定位 | [ |
| 1 | SINGH D, VIGNAT J, LORENZONI V, et al.. Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative[J]. Lancet Glob. Health, 2023, 11(2): 197-206. |
| 2 | VLASHI E, PAJONK F. Cancer stem cells, cancer cell plasticity and radiation therapy[J]. Semin. Cancer Biol., 2015, 31: 28-35. |
| 3 | PAN D. The hippo signaling pathway in development and cancer[J]. Dev. Cell, 2010, 19(4): 491-505. |
| 4 | MOHAJAN S, JAISWAL P K, VATANMAKARIAN M, et al.. Hippo pathway: regulation, deregulation and potential therapeutic targets in cancer[J]. Cancer Lett., 2021, 507: 112-123. |
| 5 | TANG W, LI M, YANGZHONG X, et al.. Hippo signaling pathway and respiratory diseases[J/OL]. Cell Death Discov., 2022, 8(1): 213[2024-02-02]. . |
| 6 | WU Z, GUAN K L. Hippo signaling in embryogenesis and development[J]. Trends Biochem. Sci., 2021, 46(1): 51-63. |
| 7 | CHEN R, XIE R, MENG Z, et al.. STRIPAK integrates upstream signals to initiate the Hippo kinase cascade[J]. Nat. Cell Biol., 2019, 21(12): 1565-1577. |
| 8 | PRASKOVA M, XIA F, AVRUCH J. MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation[J]. Curr. Biol., 2008, 18(5): 311-321. |
| 9 | HERGOVICH A, SCHMITZ D, HEMMINGS B A. The human tumour suppressor LATS1 is activated by human MOB1 at the membrane[J]. Biochem. Biophys. Res. Commun., 2006, 345(1): 50-58. |
| 10 | ZHAO B, LI L, TUMANENG K, et al.. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)[J]. Genes Dev., 2010, 24(1): 72-85. |
| 11 | HILGER D, MASUREEL M, KOBILKA B K. Structure and dynamics of GPCR signaling complexes[J]. Nat. Struct. Mol. Biol., 2018, 25(1): 4-12. |
| 12 | YU F X, ZHANG Y, PARK H W, et al.. Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation[J]. Genes Dev., 2013, 27(11): 1223-1232. |
| 13 | KIM M, KIM M, LEE S, et al.. cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes[J]. EMBO J., 2013, 32(11): 1543-1555. |
| 14 | CHO-CHUNG Y S. Role of cyclic AMP receptor proteins in growth, differentiation, and suppression of malignancy: new approaches to therapy[J]. Cancer Res., 1990, 50(22): 7093-7100. |
| 15 | MILLER E, YANG J, DERAN M, et al.. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP[J]. Chem. Biol., 2012, 19(8): 955-962. |
| 16 | REGUÉ L, MOU F, AVRUCH J. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene[J]. BioEssays Issues Rev. Mol. Cell. Dev. Biol., 2013, 35(5): 430-435. |
| 17 | HE H, SUGIYAMA A, SNYDER N W, et al.. Acyl-coA thioesterase 12 suppresses YAP-mediated hepatocarcinogenesis by limiting glycerolipid biosynthesis[J/OL]. Cancer Lett., 2023, 565: 216210[2024-02-02]. . |
| 18 | WANG Z, LIU P, ZHOU X, et al.. Endothelin promotes colorectal tumorigenesis by activating YAP/TAZ[J]. Cancer Res., 2017, 77(9): 2413-2423. |
| 19 | ZHOU X, WANG S, WANG Z, et al.. Estrogen regulates Hippo signaling via GPER in breast cancer[J]. J. Clin. Investig., 2015, 125(5): 2123-2135. |
| 20 | LI H, LI Q, DANG K, et al.. YAP/TAZ activation drives uveal melanoma initiation and progression[J]. Cell Rep., 2019, 29(10): 3200-3211. |
| 21 | SU S, JIANG W, WANG X, et al.. Resolvin D1 inhibits the proliferation of osteoarthritis fibroblast-like synoviocytes through the Hippo-YAP signaling pathway[J/OL]. BMC Musculoskelet. Disord., 2022, 23(1): 149[2024-02-02]. . |
| 22 | ZHANG K, HU Z, QI H, et al.. G-protein-coupled receptors mediate ω-3 PUFAs-inhibited colorectal cancer by activating the Hippo pathway[J]. Oncotarget, 2016, 7(36): 58315-58330. |
| 23 | AZZOLIN L, ZANCONATO F, BRESOLIN S, et al.. Role of TAZ as mediator of Wnt signaling[J]. Cell, 2012, 151(7): 1443-1456. |
| 24 | AZZOLIN L, PANCIERA T, SOLIGO S, et al.. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response[J]. Cell, 2014, 158(1): 157-170. |
| 25 | JIA X, WU B, HUANG J, et al.. YAP and Wnt3a independently promote AECIIs proliferation and differentiation by increasing nuclear β-cateninexpression in experimental bronchopulmonary dysplasia[J]. Int. J. Mol. Med., 2021, 47(1): 195-206. |
| 26 | MALGUNDKAR S H, BURNEY I, MOUNDHRI M A, et al.. E2F5 promotes the malignancy of ovarian cancer via the regulation of hippo and Wnt pathways[J]. Genet. Test. Mol. Biomark., 2021, 25(3): 179-186. |
| 27 | MALGUNDKAR S H, BURNEY I, MOUNDHRI M A, et al.. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer[J/OL]. BMC Cancer, 2020, 20(1): 374[2024-02-02]. . |
| 28 | KIM W, KHAN S K, GVOZDENOVIC-JEREMIC J, et al.. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis[J]. J. Clin. Investig., 2017, 127(1): 137-152. |
| 29 | ZHAO B, WEI X, LI W, et al.. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control[J]. Genes Dev., 2007, 21(21): 2747-2761. |
| 30 | ZHAO B, LI L, WANG L, et al.. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis[J]. Genes Dev., 2012, 26(1): 54-68. |
| 31 | WAN W, MIAO Y, NIU Y, et al.. Human umbilical cord mesenchymal stem cells conditioned medium exerts anti-tumor effects on KGN cells in a cell density-dependentmanner through activation of the Hippo pathway[J/OL]. Stem Cell Res. Ther., 2023, 14(1): 46[2024-02-02]. . |
| 32 | KUMAR B, AHMAD R, GIANNICO G A, et al.. Claudin-2 inhibits renal clear cell carcinoma progression by inhibiting YAP-activation[J/OL]. J. Exp. Clin. Cancer Res., 2021, 40(1): 77[2024-02-02]. . |
| 33 | PAQUET-FIFIELD S, KOH S L, CHENG L, et al.. Tight junction protein claudin-2 promotes self-renewal of human colorectal cancer stem-like cells[J]. Cancer Res., 2018, 78(11): 2925-2938. |
| 34 | YU S, ZHANG Y, LI Q, et al.. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer[J/OL]. Cell Death Dis., 2019, 10(12): 949[2024-02-02]. . |
| 35 | KONG F E, LI G M, TANG Y Q, et al.. Targeting tumor lineage plasticity in hepatocellular carcinoma using an anti-CLDN6 antibody-drug conjugate[J/OL]. Sci. Transl. Med., 2021, 13(579): eabb6282[2024-02-02]. . |
| 36 | KOTTON D N. Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation[J]. J. Clin. Investig., 2018, 128(3): 903-905. |
| 37 | ZHOU B, FLODBY P, LUO J, et al.. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis[J]. J. Clin. Investig., 2018, 128(3): 970-984. |
| 38 | XU X, LI Y, ZHANG R, et al.. Jianpi Yangzheng decoction suppresses gastric cancer progression via modulating the miR-448/CLDN18.2 mediated YAP/TAZ signaling[J/OL]. J. Ethnopharmacol., 2023, 311: 116450[2024-02-02]. . |
| 39 | DUPONT S, MORSUT L, ARAGONA M, et al.. Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179-183. |
| 40 | PATWARDHAN S, MAHADIK P, SHETTY O, et al.. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1[J/OL]. Biomaterials, 2021, 279: 121185[2024-02-02]. . |
| 41 | MAHADIK P, PATWARDHAN S. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells[J/OL]. Arch. Biochem. Biophys., 2023, 742: 109624[2024-02-02]. . |
| 42 | DENG B, ZHAO Z, KONG W, et al.. Biological role of matrix stiffness in tumor growth and treatment[J/OL]. J. Transl. Med., 2022, 20(1): 540[2024-02-02]. . |
| 43 | LIU Z, HAYASHI H, MATSUMURA K, et al.. Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer[J]. Br. J. Cancer, 2023, 128(5): 844-856. |
| 44 | MO J S, MENG Z, KIM Y C, et al.. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway[J]. Nat. Cell Biol., 2015, 17(4): 500-510. |
| 45 | LI X, FAN S, CAI C, et al.. YAP regulates the liver size during the fasting-refeeding transition in mice[J]. Acta Pharm. Sin. B, 2023, 13(4): 1588-1599. |
| 46 | LUO M, MENG Z, MOROISHI T, et al.. Heat stress activates YAP/TAZ to induce the heat shock transcriptome[J]. Nat. Cell Biol., 2020, 22(12): 1447-1459. |
| 47 | LIU Y, LU T, ZHANG C, et al.. Activation of YAP attenuates hepatic damage and fibrosis in liver ischemia-reperfusion injury[J]. J. Hepatol., 2019, 71(4): 719-730. |
| 48 | ZHANG X, LI Y, MA Y, et al.. Yes-associated protein (YAP) binds to HIF-1α and sustains HIF-1α protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress[J/OL]. J. Exp. Clin. Cancer Res., 2018, 37(1): 216[2024-02-02]. . |
| 49 | HUANG Y, JEDLIČKOVÁ H, CAI Y, et al.. Oxidative stress-mediated YAP dysregulation contributes to the pathogenesis of Pemphigus vulgaris [J/OL]. Front. Immunol., 2021, 12: 649502[2024-02-02]. . |
| 50 | SONG H, QIU Z, WANG Y, et al.. HIF-1α/YAP signaling rewrites glucose/iodine metabolism program to promote papillary thyroid cancer progression[J]. Int. J. Biol. Sci., 2023, 19(1): 225-241. |
| 51 | YU H, WANG H, LIU J, et al.. The effect of ROS-YAP crosstalk on osteoimmune response orchestrating osteogenesis[J]. Cell Cycle Georget. Tex, 2023, 22(11): 1391-1405. |
| 52 | MASUDA H, ARISAKA Y, HAKARIYA M, et al.. Molecular mobility of polyrotaxane surfaces alleviates oxidative stress-induced senescence in mesenchymal stem cells[J/OL]. Macromol. Biosci., 2023, 23(5): e2300053[2024-02-02]. . |
| 53 | JIN J, ZHANG L, LI X, et al.. Oxidative stress-CBP axis modulates MOB1 acetylation and activates the Hippo signaling pathway[J]. Nucleic Acids Res., 2022, 50(7): 3817-3834. |
| 54 | JIANG X, MARUYAMA J, IWASA H, et al.. Heat shock induces the nuclear accumulation of YAP1 via SRC[J/OL]. Exp. Cell Res., 2021, 399(1): 112439[2024-02-02]. . |
| 55 | CHEN X, TONG G, CHEN S. Basic fibroblast growth factor protects against liver ischemia-reperfusion injury via the Nrf2/Hippo signaling pathway[J/OL]. Tissue Cell, 2022, 79: 101921[2024-02-02]. . |
| 56 | JANG E J, JEONG H, HAN K H, et al.. TAZ suppresses NFAT5 activity through tyrosine phosphorylation[J]. Mol. Cell. Biol., 2012, 32(24): 4925-4932. |
| 57 | LIN K C, MOROISHI T, MENG Z, et al.. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation[J]. Nat. Cell Biol., 2017, 19(8): 996-1002. |
| 58 | ALHOUSAMI T, DINY M, ALI F, et al.. Inhibition of LSD1 attenuates oral cancer development and promotes therapeutic efficacy of immune checkpoint blockade and YAP/TAZ inhibition[J]. Mol. Cancer Res., 2022, 20(5): 712-721. |
| 59 | DELVAUX M, HAGUÉ P, CRACIUN L, et al.. Ferroptosis induction and YAP inhibition as new therapeutic targets in gastrointestinal stromal tumors (GISTs)[J/OL]. Cancers, 2022, 14(20): 5050[2024-02-02]. . |
| 60 | PHILIPPE C, PINSON B, DOMPIERRE J, et al.. AICAR antiproliferative properties involve the AMPK-independent activation of the tumor suppressors LATS 1 and 2[J]. Neoplasia, 2018, 20(6): 555-562. |
| 61 | TANG T T, KONRADI A W, FENG Y, et al.. Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma[J]. Mol. Cancer Ther., 2021, 20(6): 986-998. |
| 62 | SAITO Y, YIN D, KUBOTA N, et al.. A therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23[J]. Gastroenterology, 2023, 164(7): 1279-1292. |
| 63 | HEINRICH T, PETERSON C, SCHNEIDER R, et al.. Optimization of TEAD P-site binding fragment hit into in vivo active lead MSC-4106[J]. J. Med. Chem., 2022, 65(13): 9206-9229. |
| 64 | LAPIDOT T, SIRARD C, VORMOOR J, et al.. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464): 645-648. |
| 65 | ZHANG H, BROWN R L, WEI Y, et al.. CD44 splice isoform switching determines breast cancer stem cell state[J]. Genes Dev., 2019, 33(3-4): 166-179. |
| 66 | JIANG P, LI F, LIU Z, et al.. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression[J/OL]. Respir. Res., 2021, 22(1): 320[2024-02-02]. . |
| 67 | KOYAMA S, TSUCHIYA H, AMISAKI M, et al.. NEAT1 is required for the expression of the liver cancer stem cell marker CD44[J/OL]. Int. J. Mol. Sci., 2020, 21(6): 1927[2024-02-02]. . |
| 68 | LI H, WANG C, LAN L, et al.. METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability[J/OL]. Cell. Mol. Life Sci., 2022, 79(3): 135[2024-02-02]. . |
| 69 | THIRUSANGU P, RAY U, SARKAR B S, et al.. PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma[J]. Oncogene, 2022, 41(33): 4003-4017. |
| 70 | YANG J, ALJITAWI O, VAN VELDHUIZEN P. Prostate cancer stem cells: the role of CD133[J/OL]. Cancers, 2022, 14(21): 5448[2024-02-02]. . |
| 71 | FERRAGUT F, VACHETTA V S, TRONCOSO M F, et al.. ALCAM/CD166: a pleiotropic mediator of cell adhesion, stemness and cancer progression[J]. Cytokine Growth Factor Rev., 2021, 61: 27-37. |
| 72 | CHEN X, LIANG R, LIN H, et al.. CD166 promotes cancer stem cell-like phenotype via the EGFR/ERK1/2 pathway in the nasopharyngeal carcinoma cell line CNE-2R[J/OL]. Life Sci., 2021, 267: 118983[2024-02-02]. . |
| 73 | LEVIN T G, POWELL A E, DAVIES P S, et al.. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract[J]. Gastroenterology, 2010, 139(6): 2072-2082.e5. |
| 74 | PRASETYANTI P R, MEDEMA J P. Intra-tumor heterogeneity from a cancer stem cell perspective[J/OL]. Mol. Cancer, 2017, 16(1): 41[2024-02-02]. . |
| 75 | PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol., 2019, 29(3): 212-226. |
| 76 | QIN T, LI B, FENG X, et al.. Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity[J/OL]. J. Exp. Clin. Cancer Res., 2018, 37(1): 287[2024-02-02]. . |
| 77 | PASTUSHENKO I, MAURI F, SONG Y, et al.. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis[J]. Nature, 2021, 589(7842): 448-455. |
| 78 | FELDKER N, FERRAZZI F, SCHUHWERK H, et al.. Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer[J/OL]. EMBO J., 2020, 39(17): e103209[2024-02-02]. . |
| 79 | PARK H, LEE Y, LEE K, et al.. The clinicopathological significance of YAP/TAZ expression in hepatocellular carcinoma with relation to hypoxia and stemness[J/OL]. Pathol. Oncol. Res., 2021, 27: 604600[2024-02-02]. . |
| 80 | SANTORO R, ZANOTTO M, CARBONE C, et al.. MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity[J]. Anticancer Res., 2018, 38(4): 1937-1946. |
| 81 | LIU M, ZHANG Y, YANG J, et al.. Zinc-dependent regulation of ZEB1 and YAP1 coactivation promotes epithelial-mesenchymal transition plasticity and metastasis in pancreatic cancer[J]. Gastroenterology, 2021, 160(5): 1771-1783. |
| 82 | WANG Y, LIAO R, CHEN X, et al.. Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway[J/OL]. Cell Death Dis., 2020, 11(7): 520[2024-02-02]. . |
| 83 | LIU Y, SONG Y, CAO M, et al.. A novel EHD1/CD44/Hippo/SP1 positive feedback loop potentiates stemness and metastasis in lung adenocarcinoma[J/OL]. Clin. Transl. Med., 2022, 12(4): e836[2024-02-02]. . |
| 84 | KAOWINN S, YAWUT N, KOH S S, et al.. Cancer upregulated gene CUG2 elevates YAP1 expression, leading to enhancement of epithelial-mesenchymal transition in human lung cancer cells[J]. Biochem. Biophys. Res. Commun., 2019, 511(1): 122-128. |
| 85 | LIN H, PENG J, ZHU T, et al.. Exosomal miR-4800-3p aggravates the progression of hepatocellular carcinoma via regulating the hippo signaling pathway by targeting STK25[J/OL]. Front. Oncol., 2022, 12: 759864[2024-02-02]. . |
| 86 | LIU J, HONG X, LIANG C Y, et al.. Simultaneous visualisation of the complete sets of telomeres from the Mme I generated terminal restriction fragments in yeasts[J]. Yeast Chichester Engl., 2020, 37(11): 585-595. |
| 87 | WANG H, GONG P, CHEN T, et al.. Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres[J/OL]. Adv. Sci., 2021, 8(8): 2004320[2024-02-02]. . |
| 88 | PIÑOL-FELIS C, FERNÁNDEZ-MARCELO T, VIÑAS-SALAS J, et al.. Telomeres and telomerase in the clinical management of colorectal cancer[J]. Clin. Transl. Oncol., 2017, 19(4): 399-408. |
| 89 | LIU Z, LI Q, LI K, et al.. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells[J]. Oncogene, 2013, 32(36): 4203-4213. |
| 90 | ZHANG Q, LIU N, BAI J, et al.. Human telomerase reverse transcriptase is a novel target of Hippo-YAP pathway[J]. FASEB J., 2020, 34(3): 4178-4188. |
| 91 | HE L, WU M Z, WANG X B, et al.. Tumor suppressor LKB1 inhibits both the mRNA expression and the amplification of hTERC by the phosphorylation of YAP in lung cancer cells[J]. J. Cancer, 2019, 10(16): 3632-3638. |
| 92 | YU M, PENG Z, QIN M, et al.. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation[J]. Mol. Cell, 2021, 81(6): 1216-1230. |
| [1] | Yuqin BIAN, Keran DONG, Junzi LU, Enming ZHONG, Wanying GU, Jingshu ZHAO, Hongshu SUI. Clinical Progress in Targeted Therapy and Immunotherapy in Breast Cancer [J]. Current Biotechnology, 2025, 15(2): 234-240. |
| [2] | Pengxiao ZHANG, Nian HU. The Research Progress on Action Mechanism of Melanoma Immunotherapy [J]. Current Biotechnology, 2023, 13(6): 900-906. |
| [3] | Linlin DU, Fei XIE, Xuemei MA. Pro-oncogenic Function and Therapeutic Significance of SALL4 [J]. Current Biotechnology, 2023, 13(5): 704-711. |
| [4] | Jinping XIAO, Cheng LI, Yundi CAO, Zhijian SUN, Ping KANG, Xiaomei LAN. Research Progress on the Relationship Between RET Protooncogene and Tumor [J]. Current Biotechnology, 2022, 12(1): 57-62. |
| [5] | LIU-CHENG Linzi1, WU Yaoqin1, HUANG Enze1, XU Ruifeng1, ZHENG Peng1,2*. Progress in Anticancer Effect of Disulfiram [J]. Curr. Biotech., 2021, 11(2): 155-162. |
| [6] | WU Jin§, XIAO Hui§, ZHAO Mindie, DING Xin, ZHENG Dong*, LIU Xuedong*. Review on SOX9 Gene Expression in Carcinogenesis and Development [J]. Curr. Biotech., 2018, 8(5): 397-401. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||