| 1 | SUN H, SAEEDI P, KARURANGA S, et al.. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res. Clin. Pract., 2022, 183: 109119[2021-12-06]. . | 
																													
																							| 2 | 廖敏,杨洛,王珍,等.松果菊苷对db/db糖尿病小鼠心肌的保护作用[J].生物技术进展,2022,12(1):129-134. | 
																													
																							|  | LIAO M, YANG L, WANG Z, et al.. Protective effect of echinacoside on myocardium in db/db diabetic mice[J]. Curr. Biotechnol., 2022, 12(1): 129-134. | 
																													
																							| 3 | ZHENG H, ZHU H, LIU X, et al.. Mitophagy in diabetic cardiomyopathy: roles and mechanisms[J/OL]. Front. Cell Dev. Biol., 2021, 9: 750382[2021-09-27]. . | 
																													
																							| 4 | 廖敏,杨洛,王珍,等.糖尿病心肌病发病机制的研究进展[J].生物技术进展,2021,11(6):700-704. | 
																													
																							|  | LIAO M, YANG L, WANG Z, et al.. Research progress on the pathogenesis of diabetic cardiomyopathy[J]. Curr. Biotechnol., 2021, 11(6): 700-704. | 
																													
																							| 5 | PETERSON L R, GROPLER R J. Metabolic and molecular imaging of the diabetic cardiomyopathy[J]. Circ. Res., 2020, 126(11): 1628-1645. | 
																													
																							| 6 | WU N N, ZHANG Y, REN J. Mitophagy, dynamicsmitochondrial, and homeostasis in cardiovascular aging[J/OL]. Oxid. Med. Cell. Longev., 2019, 2019: 9825061[2019-11-04]. . | 
																													
																							| 7 | BALABAN R S. Regulation of oxidative phosphorylation in the mammalian cell[J]. Am. J. Physiol., 1990, 258(Pt 1): 377-389. | 
																													
																							| 8 | ZHOU H, DAI Z, LI J, et al.. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury[J/OL]. Metabolism, 2023, 140: 155383[2023-01-02]. . | 
																													
																							| 9 | PLOUMI C, DASKALAKI I, TAVERNARAKIS N. Mitochondrial biogenesis and clearance: a balancing act[J]. FEBS J., 2017, 284(2): 183-195. | 
																													
																							| 10 | LI L, ZHANG Y, CHEN Z, et al.. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of vidarabine against rotenone-induced neural cell injury[J/OL]. Heliyon, 2023, 9(11): e21695[2023-10-26]. . | 
																													
																							| 11 | CHANG X, LI Y, CAI C, et al.. Mitochondrial quality control mechanisms as molecular targets in diabetic heart[J/OL]. Metabolism, 2022, 137: 155313[2022-09-17]. . | 
																													
																							| 12 | KIYUNA L A, CANDIDO D S, BECHARA L R G, et al.. 4-hydroxynonenal impairs miRNA maturation in heart failure via Dicer post-translational modification[J]. Eur. Heart J., 2023, 44(44): 4696-4712. | 
																													
																							| 13 | FONTANA F, MACCHI C, ANSELMI M, et al.. PGC1-α-driven mitochondrial biogenesis contributes to a cancer stem cell phenotype in melanoma[J/OL]. Biochim. Biophys. Acta Mol. Basis Dis., 2024, 1870(1): 166897[2023-09-25]. . | 
																													
																							| 14 | MAISSAN P, MOOIJ E J, BARBERIS M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: a systematic review[J/OL]. Biology, 2021, 10(3): 194[2021-03-04]. . | 
																													
																							| 15 | ZHANG J, LI J, LIU Y, et al.. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes[J/OL]. Meat Sci., 2023, 204: 109287[2023-07-20]. . | 
																													
																							| 16 | WANG W, CHEN S, XU S, et al.. Jianpi Shengqing Huazhuo Formula improves abnormal glucose and lipid metabolism in obesity by regulating mitochondrial biogenesis[J/OL]. J. Ethnopharmacol., 2024, 319(Pt 1): 117102[2023-09-03]. . | 
																													
																							| 17 | ŻULIŃSKA S, STROSZNAJDER A K, STROSZNAJDER J B. The role of synthetic ligand of PPARα in regulation of transcription of genes related to mitochondria biogenesis and dynamic in an animal model of Alzheimer's disease[J]. Folia Neuropathol., 2023, 61(2): 138-143. | 
																													
																							| 18 | WANG L, BI X, HAN J. Silencing of peroxisome proliferator-activated receptor-alpha alleviates myocardial injury in diabetic cardiomyopathy by downregulating 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 expression[J]. IUBMB Life, 2020, 72(9): 1997-2009. | 
																													
																							| 19 | PACKER M. Autophagy-dependent and-independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs[J/OL]. Cardiovasc. Diabetol., 2020, 19(1): 62[2020-05-13]. . | 
																													
																							| 20 | ZHANG Z, ZHANG X, MENG L, et al.. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway[J/OL]. Front. Pharmacol., 2021, 12: 658362[2021-06-14]. . | 
																													
																							| 21 | PUIGSERVER P, WU Z, PARK C W, et al.. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829-839. | 
																													
																							| 22 | TAO L C, WANG T T, ZHENG L, et al.. The role of mitochondrial biogenesis dysfunction in diabetic cardiomyopathy[J]. Biomol. Ther., 2022, 30(5): 399-408. | 
																													
																							| 23 | SHELBAYEH O A, ARROUM T, MORRIS S, et al.. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response[J/OL]. Antioxidants, 2023, 12(5): 1075[2023-05-10]. . | 
																													
																							| 24 | MUSHTAQ I, BASHIR Z, SARWAR M, et al.. N-acetyl cysteine, selenium, and ascorbic acid rescue diabetic cardiac hypertrophy via mitochondrial-associated redox regulators[J/OL]. Molecules, 2021, 26(23): 7285[2021-11-30]. . | 
																													
																							| 25 | HU T, WU Q, YAO Q, et al.. PRDM16 exerts critical role in myocardial metabolism and energetics in type 2 diabetes induced cardiomyopathy[J/OL]. Metabolism, 2023, 146: 155658[2023-07-09]. . | 
																													
																							| 26 | 梁传财,易鹏,邱波.AMPK/SIRT1/PPARγ/PGC1α轴及其相关因子在骨关节炎脂质代谢中的作用[J].生物技术进展,2021,11(6):718-723. | 
																													
																							|  | LIANG C C, YI P, QIU B. Effects of AMPK/SIRT1/PPARγ/PGC1α axis and related factors on lipid metabolism in osteoarthritis[J]. Curr. Biotechnol., 2021, 11(6): 718-723. | 
																													
																							| 27 | LEE T W, BAI K J, LEE T I, et al.. PPARs modulate cardiac metabolism and mitochondrial function in diabetes[J/OL]. J. Biomed. Sci., 2017, 24(1): 5[2017-01-10]. . | 
																													
																							| 28 | KHAN D, ARA T, RAVI V, et al.. SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ[J/OL]. Cell Rep., 2021, 35(9): 109190[2021-06-01]. . | 
																													
																							| 29 | CEFALO C M A, CINTI F, MOFFA S, et al.. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives[J/OL]. Cardiovasc. Diabetol., 2019, 18(1): 20[2019-02-28]. . | 
																													
																							| 30 | WEI D, LIAO L, WANG H, et al.. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro [J/OL]. Life Sci., 2020, 247: 117414[2020-02-06]. . | 
																													
																							| 31 | REIFSNIDER O S, KANSAL A R, GANDHI P K, et al.. Cost-effectiveness of empagliflozin versus canagliflozin, dapagliflozin, or standard of care in patients with type 2 diabetes and established cardiovascular disease[J/OL]. BMJ Open Diabetes Res. Care, 2021, 9(1): e001313[2021-05-09]. . | 
																													
																							| 32 | KIM J H, LEE M, KIM S H, et al.. Sodium-glucose cotransporter 2 inhibitors regulate ketone body metabolism via inter-organ crosstalk[J]. Diabetes Obes. Metab., 2019, 21(4): 801-811. | 
																													
																							| 33 | WANG J, HUANG X, LIU H, et al.. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function[J/OL]. Oxid. Med. Cell. Longev., 2022, 2022: 1122494[2022-05-09]. . | 
																													
																							| 34 | SHAO Q, MENG L, LEE S, et al.. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats[J/OL]. Cardiovasc. Diabetol., 2019, 18(1): 165[2019-11-28]. . | 
																													
																							| 35 | KRISTENSEN S L, RØRTH R, JHUND P S, et al.. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endocrinol., 2019, 7(10): 776-785. | 
																													
																							| 36 | VERMA S, MCGUIRE D K, BAIN S C, et al.. Effects of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body mass index categories in type 2 diabetes: results of the LEADER and SUSTAIN 6 trials[J]. Diabetes Obes. Metab., 2020, 22(12): 2487-2492. | 
																													
																							| 37 | GIUGLIANO D, SCAPPATICCIO L, LONGO M, et al.. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs[J/OL]. Cardiovasc. Diabetol., 2021, 20(1): 189[2021-09-15]. . | 
																													
																							| 38 | ZHANG X, ZHANG Z, YANG Y, et al.. Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits[J/OL]. Cardiovasc. Diabetol., 2018, 17(1): 160[2018-12-27]. . | 
																													
																							| 39 | PHAM T K, NGUYEN T H T, YI J M, et al.. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice[J]. Exp. Mol. Med., 2023, 55(4): 767-778. | 
																													
																							| 40 | FANG W J, LI X M, ZHOU X K, et al.. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation[J/OL]. Eur. J. Pharmacol., 2022, 936: 175342[2022-12-29]. . | 
																													
																							| 41 | XIONG Y, HAI C X, FANG W J, et al.. Endogenous asymmetric dimethylarginine accumulation contributes to the suppression of myocardial mitochondrial biogenesis in type 2 diabetic rats[J/OL]. Nutr. Metab., 2020, 17: 72[2020-08-24]. . | 
																													
																							| 42 | XIONG Y, HE Y L, LI X M, et al.. Endogenous asymmetric dimethylarginine accumulation precipitates the cardiac and mitochondrial dysfunctions in type 1 diabetic rats[J/OL]. Eur. J. Pharmacol., 2021, 902: 174081[2021-04-24]. . | 
																													
																							| 43 | MA T, HUANG X, ZHENG H, et al.. SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy[J/OL]. Oxid. Med. Cell. Longev., 2021, 2021: 9265016[2021-11-08]. . | 
																													
																							| 44 | YU L M, DONG X, XUE X D, et al.. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: role of SIRT6[J/OL]. J. Pineal Res., 2021, 70(1): e12698[2020-10-24]. . | 
																													
																							| 45 | CHANG X, ZHANG T, WANG J, et al.. SIRT5-related desuccinylation modification contributes to quercetin-induced protection against heart failure and high-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance[J/OL]. Oxid. Med. Cell. Longev., 2021, 2021: 5876841[2021-09-23]. . | 
																													
																							| 46 | LI Y, WEI X, LIU S L, et al.. Salidroside protects cardiac function in mice with diabetic cardiomyopathy via activation of mitochondrial biogenesis and SIRT3[J]. Phytother. Res., 2021, 35(8): 4579-4591. | 
																													
																							| 47 | KO T H, MARQUEZ J C, KIM H K, et al.. Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts[J]. Pflugers Arch. Eur. J. Physiol., 2018, 470(2): 263-275. | 
																													
																							| 48 | LI J, FENG Z, LU B, et al.. Resveratrol alleviates high glucose-induced oxidative stress and apoptosis in rat cardiac microvascular endothelial cell through AMPK/Sirt1 activation[J/OL]. Biochem. Biophys. Rep., 2023, 34: 101444[2023-03-01]. . | 
																													
																							| 49 | WANG H, BEI Y, LU Y, et al.. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation[J]. Cell. Physiol. Biochem., 2015, 35(6): 2159-2168. |