| 1 | REHMAN S U, REHMAN S U, YOO H H. COVID-19 challenges and its therapeutics[J/OL]. Biomed. Pharmacother., 2021, 142: 112015[2023-07-25]. . | 
																													
																							| 2 | YANG Y, ISLAM M S, WANG J, et al.. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective[J]. Int. J. Biol. Sci., 2020, 16(10): 1708-1717. | 
																													
																							| 3 | AN X, ZHANG Y, DUAN L, et al.. The direct evidence and mechanism of traditional Chinese medicine treatment of COVID-19[J/OL]. Biomed. Pharmacother., 2021, 137: 111267[2023-07-25]. . | 
																													
																							| 4 | ZHAO H, ZENG S, CHEN L, et al.. Updated pharmacological effects of Lonicerae japonicae flos, with a focus on its potential efficacy on coronavirus disease-2019 (COVID-19)[J]. Curr. Opin. Pharmacol., 2021, 60: 200-207. | 
																													
																							| 5 | 胡芬, 郭爱华,黄 鹿, 等. 不同剂量金银花口服液联合西医常规疗法治疗新型冠状病毒感染普通型187例多中心临床观察[J]. 中医杂志, 2021, 62(6): 510-515. | 
																													
																							| 6 | ZHOU L K, ZHOU Z, JIANG X M, et al.. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients[J/OL]. Cell Discov., 2020, 6(1): 54[2023-07-25]. . | 
																													
																							| 7 | DU X Q, SHI L P, CAO W F, et al.. Add-on effect of honeysuckle in the treatment of coronavirus disease 2019: a systematic review and meta-analysis[J/OL]. Front. Pharmacol., 2021, 12: 708636[2023-07-25]. . | 
																													
																							| 8 | YEH Y C, DOAN L H, HUANG Z Y, et al.. Honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) suppress SARS-CoV-2 entry and COVID-19 related cytokine storm in vitro [J/OL]. Front. Pharmacol., 2021, 12: 765553[2023-07-25]. . | 
																													
																							| 9 | LEE Y R, CHANG C M, YEH Y C, et al.. Honeysuckle aqueous extracts induced let-7a suppress EV71 replication and pathogenesis in vitro and in vivo and is predicted to inhibit SARS-CoV-2[J/OL]. Viruses, 2021, 13(2): 308[2023-07-25]. . | 
																													
																							| 10 | 董峰, 皇甫秉欣, 徐佳, 等. 基于网络药理学探究薏苡仁干预脂肪性肝病的机制[J]. 生物技术进展, 2023, 13(2): 264-272. | 
																													
																							| 11 | 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第八版 修订版)[J]. 中华临床感染病杂志, 2021, 14(2): 81-88. | 
																													
																							| 12 | REN J L, ZHANG A H, WANG X J. Traditional Chinese medicine for COVID-19 treatment[J/OL]. Pharmacol. Res., 2020, 155: 104743[2023-07-25]. . | 
																													
																							| 13 | 高新生, 张又莉, 韩立虎. 金银花口服液治疗普通型新型冠状病毒感染1例临床观察[J]. 中国药业, 2020, 29(7): 58-59. | 
																													
																							| 14 | 张又莉, 雷亮, 徐勇, 等. 金银花口服液治疗新型冠状病毒感染80例临床疗效分析[J]. 中国药业, 2020, 29(9): 23-26. | 
																													
																							| 15 | KHAN SHAWAN M MALI, HALDER S K, HASAN M A. Luteolin and abyssinone Ⅱ as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak[J/OL]. Bull. Natl. Res. Cent., 2021, 45(1): 27[2023-07-25]. . | 
																													
																							| 16 | 王利华, 孙成宏, 邸琨,等. 黄酮类单体抗奥密克戎毒株药理活性研究[J]. 中华中医药学刊, 2023, 41(1): 18-20+261. | 
																													
																							| 17 | RABHA D J, SINGH T U, RUNGSUNG S, et al.. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice[J]. Exp. Lung Res., 2018, 44(2): 63-78. | 
																													
																							| 18 | KHAN A, HENG W, WANG Y, et al.. In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro)[J]. Phytother. Res., 2021, 35(6): 2841-2845. | 
																													
																							| 19 | HUANG K, ZHANG P, ZHANG Z, et al.. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: efficacies and mechanisms[J/OL]. Pharmacol. Ther., 2021, 225: 107843[2023-07-25]. . | 
																													
																							| 20 | SAEEDI-BOROUJENI A, M-RMAHMOUDIAN-SANI. Anti-inflammatory potential of quercetin in COVID-19 treatment[J/OL]. J. Inflamm., 2021, 18(1): 3[2023-07-25]. . | 
																													
																							| 21 | PAN B, FANG S, ZHANG J, et al.. Chinese herbal compounds against SARS-CoV-2: puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor[J]. Comput. Struct. Biotechnol. J., 2020, 18: 3518-3527. | 
																													
																							| 22 | ZALPOOR H, BAKHTIYARI M, LIAGHAT M, et al.. Quercetin potential effects against SARS-CoV-2 infection and COVID-19-associated cancer progression by inhibiting mTOR and hypoxia-inducible factor-1α (HIF-1α)[J]. Phytother. Res., 2022, 36(7): 2679-2682. | 
																													
																							| 23 | APPELBERG S, GUPTA S, SVENSSON AKUSJÄRVI S, et al.. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells[J]. Emerg. Microbes Infect., 2020, 9(1): 1748-1760. | 
																													
																							| 24 | DÜLGER S U, MUTLU N, CEYLAN İ, et al.. The relationship between lung fibrosis, the epidermal growth factor receptor, and disease outcomes in COVID-19 pneumonia: a postmortem evaluation[J]. Clin. Exp. Med., 2022: 1-8. | 
																													
																							| 25 | SEREBROVSKA Z O, CHONG E Y, SEREBROVSKA T V, et al.. Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets[J]. Acta Pharmacol. Sin., 2020, 41(12): 1539-1546. | 
																													
																							| 26 | VALLÉE A, LECARPENTIER Y, VALLÉE J N. Interplay of opposing effects of the WNT/β-catenin pathway and PPARγ and implications for SARS-CoV2 treatment[J/OL]. Front. Immunol., 2021, 12: 666693[2023-07-25]. . | 
																													
																							| 27 | AVILA-MESQUITA C D, COUTO A E S, CAMPOS L C B, et al.. MMP-2 and MMP-9 levels in plasma are altered and associated with mortality in COVID-19 patients[J/OL]. Biomed. Pharmacother., 2021, 142: 112067[2023-07-25]. . | 
																													
																							| 28 | LI F, BOON A C M, MICHELSON A P, et al.. Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19[J/OL]. Sci. Rep., 2022, 12(1): 9462[2023-07-25]. . | 
																													
																							| 29 | ZHANG Q, WU X, YANG J.  miR-194-5p protects against myocardial ischemia/reperfusion injury via MAPK1/PTEN/AKT pathway[J/OL]. Ann. Transl. Med., 2021, 9(8): 654[2023-07-25]. . | 
																													
																							| 30 | WING P A C, KEELEY T P, ZHUANG X, et al.. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells[J/OL]. Cell Rep., 2021, 35(3): 109020[2023-07-25]. . | 
																													
																							| 31 | TIAN M, LIU W, LI X, et al.. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19[J/OL]. Signal Transduct. Target. Ther., 2021, 6(1): 308[2023-07-25]. . | 
																													
																							| 32 | AL-QAHTANI A A, PANTAZI I, ALHAMLAN F S, et al.. SARS-CoV-2 modulates inflammatory responses of alveolar epithelial type Ⅱ cells via PI3K/AKT pathway[J/OL]. Front. Immunol., 2022, 13: 1020624[2023-07-25]. . | 
																													
																							| 33 | LI F, LI J, WANG P H, et al.. SARS-CoV-2 spike promotes inflammation and apoptosis through autophagy by ROS-suppressed PI3K/AKT/mTOR signaling[J/OL]. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(12): 166260[2023-07-25]. . | 
																													
																							| 34 | ABEL T, MOODLEY J, KHALIQ O P, et al.. Vascular endothelial growth factor receptor 2: molecular mechanism and therapeutic potential in preeclampsia comorbidity with human immunodeficiency virus and severe acute respiratory syndrome coronavirus 2 infections[J/OL]. Cell. Signal., 2022, 23(22): 13752[2023-07-25]. . | 
																													
																							| 35 | ZENG F M, LI Y W, DENG Z H, et al.. SARS-CoV-2 spike spurs intestinal inflammation via VEGF production in enterocytes[J/OL]. EMBO Mol. Med., 2022, 14(5): e14844[2023-07-25]. . | 
																													
																							| 36 | YAMAMOTO K, TAKAGI Y, ANDO K, et al.. Rap1 small GTPase regulates vascular endothelial-cadherin-mediated endothelial cell-cell junctions and vascular permeability[J]. Biol. Pharm. Bull., 2021, 44(10): 1371-1379. |