Current Biotechnology ›› 2022, Vol. 12 ›› Issue (6): 801-805.DOI: 10.19586/j.2095-2341.2022.0140
• Reviews • Next Articles
Dan CAO1(
), Linlong MA1, Yanli LIU1, Lili WANG2, Xiaofang JIN1(
)
Received:2022-08-05
Accepted:2022-08-30
Online:2022-11-25
Published:2022-11-30
Contact:
Xiaofang JIN
曹丹1(
), 马林龙1, 刘艳丽1, 王丽丽2, 金孝芳1(
)
通讯作者:
金孝芳
作者简介:曹丹 E-mail: skyiswide@163.com;
基金资助:CLC Number:
Dan CAO, Linlong MA, Yanli LIU, Lili WANG, Xiaofang JIN. Advance on MicroRNA Involved in Nutrient Element Stress in Plant[J]. Current Biotechnology, 2022, 12(6): 801-805.
曹丹, 马林龙, 刘艳丽, 王丽丽, 金孝芳. 植物营养元素胁迫相关microRNA研究进展[J]. 生物技术进展, 2022, 12(6): 801-805.
| 营养元素 | miRNA |
|---|---|
| P | miR399[ |
| S | miRNA393[ |
| N | miR160[ |
| K | miR156d-5p[ |
| Fe | miR397[ |
| B | miR397[ |
| Al | miR1561[ |
| Cu | miR1113[ |
Table 1 MiRNAs responding to nutrient stress in plants
| 营养元素 | miRNA |
|---|---|
| P | miR399[ |
| S | miRNA393[ |
| N | miR160[ |
| K | miR156d-5p[ |
| Fe | miR397[ |
| B | miR397[ |
| Al | miR1561[ |
| Cu | miR1113[ |
| 1 | LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843. |
| 2 | ZHANG B, PAN X, COBB G P, et al.. Plant microRNA: a small regulatory molecule with big impact[J]. Dev. Biol., 2006, 289(1): 3-16. |
| 3 | 黄儒,苍晶,于晶,等.冬小麦小RNA高通量测序及生物信息学分析[J].植物学报, 2014, 49(1): 8-18. |
| 4 | HUANG S Q, PENG J, QIU C X, et al.. Heavy metal-regulated new microRNAs from rice[J]. J. Inorg. Biochem., 2009, 103(2): 282-287. |
| 5 | SHIVAPRASAD P V, CHEN H M, PATEL K, et al.. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other miRNAs[J]. Plant Cell, 2012, 24(3): 859-874. |
| 6 | 徐媛媛,刘晓纳,朱世平,等.植物微RNA的生物学功能及其在砧穗互作中的作用研究进展[J].中国南方果树,2017,46(3): 172-178. |
| 7 | KOCHIAN L V. Plant nutrition: rooting for more phosphorus[J]. Nature, 2012, 488(7412): 466-467. |
| 8 | 陶平. miR399调控大豆磷平衡及开花的初步研究[D].广州: 华南农业大学, 2016. |
| 9 | DU Q G, WANG K, ZOU C, et al.. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiol., 2018, 177(4): 1743-1753. |
| 10 | 刘浩,李玉龙,汤萌萌,等.拟南芥miR156与miR399在低磷胁迫中的对话机制初探[J].河南农业科学, 2019(7): 54-58. |
| 11 | LIN W Y, HUANG T K, CHIOU T J. Nitrogen limitation adaptation, a target of microRNA827,mediates degradation of plasma membrane-localizedphosphate transporters to maintain phosphate homeostasis in Arabidopsis [J]. Plant Cell, 2013, 25(10): 4061-4074. |
| 12 | 顾冕,孟大千,徐国华.烟草microRNA827及其靶基因的鉴定与分析[J]. 南京农业大学学报, 2016, 39(6): 965-972. |
| 13 | PHILLIPS J R, DALMAY T, BARTELS D. The role of small RNAs in abiotic stress[J]. FEBS Lett., 2007, 581(19): 3592-3597. |
| 14 | ZENG H Q, ZHU Y Y, HUANG S Q, et al.. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.)[J]. J. Plant Physiol., 2010, 167(15): 1289-1297. |
| 15 | LYU C Y, SHA A H. Response to phosphorus deficiency regulated by microRNA168 in soybean plant[J]. Chin. J. Oil Crop Sci., 2017, 39(3): 321-325. |
| 16 | YAN G, LI X, TIAN Q Y, et al.. Sulfur deficiency had different effects on Medicago truncatula ecotypes A17 and R108 in terms of growth, root morphology and nutrient contents[J]. J. Plant Nutr., 2016, 39(3): 301-314. |
| 17 | 李利红,仪慧兰.二氧化硫胁迫下拟南芥miRNA表达谱分析[J].环境科学学报, 2019, 39(7): 317-322. |
| 18 | 艾芹.拟南芥miR395靶向的APS基因对硫酸根浓度的调控[D].西双版纳:中国科学院西双版纳热带植物园, 2015. |
| 19 | 刘炜婳,林争春,刘彦英,等.野生蕉miR395a前体克隆与进化特性及启动子分析[J].应用与环境生物学报, 2018, 24(1): 89-96. |
| 20 | MATTHEWMAN C A, KAWASHIMA C G, HÚSKA D, et al.. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis [J]. FEBS Lett., 2012, 586(19): 3242-324. |
| 21 | CHIOU T J. The role of microRNAs in sensing nutrient stress[J]. Plant Cell Environ., 2007, 30(3): 323-332. |
| 22 | 麻艳超.拟南芥氮素营养相关基因的图位克隆及其初步功能验证[D].秦皇岛:河北科技师范学院, 2014. |
| 23 | LIANG G, HE H, YU D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana [J/OL]. PLoS ONE, 2012, 7(11): e48951[2012-11-14]. . |
| 24 | LIU Z W, LI H, LIU J X, et al.. Integrative transcriptome,proteome,and microRNA analysis reveals the effects of nitrogen sufficiency and deficiency conditions on theanine metabolism in the tea plant (Camellia sinensis)[J/OL]. Hortic. Res., 2020, 7: 65[2020-05-01]. . |
| 25 | 赵勐.玉米氮素营养相关小分子非编码RNA的克隆及miRNA169的功能鉴定[D].北京:中国农业大学,2014. |
| 26 | HE H, LIANG G, LI Y, et al.. Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana [J]. Plant Physiol., 2014, 164(2): 853-865. |
| 27 | 谢文召,赵媛媛,许华萌,等.小麦小分子RNA TaMIR1129介导植株抵御低氮逆境功能研究[J].河北农业大学学报, 2016, 39(5): 12-17. |
| 28 | 潘樱,张仪平,朱敏慧 等.光皮桦miR393及其靶基因在低氮胁迫中的表达分析[J].核农学报, 2017(10): 1921-1930. |
| 29 | 孙青.高氮条件下microRNA528调控玉米倒伏的机制研究[D].北京:中国农业科学院,2018. |
| 30 | LUIS A D, MARKMANN K, COGNATV, et al.. Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus [J]. Plant Physiol., 2012, 160(4): 2137-2154. |
| 31 | 赵晓明.番茄响应低钾胁迫关键基因的挖掘[D].沈阳:沈阳农业大学,2018. |
| 32 | 赵晓明,张宁,安欣悦. miRNAs在番茄钾营养胁迫中的作用[J].北方园艺, 2019, 431(8): 21-27. |
| 33 | 叶芝兰.大麦响应低钾胁迫的基因型差异及其耐性机制研究[D].杭州:浙江大学,2020. |
| 34 | 李倩.花生根系形态shovelomics与响应氮钾缺乏的miRNA调控机制[D].新乡:河南科技学院,2020. |
| 35 | 金龙飞.基于组学的柑橘缺铁及硼胁迫分子响应研究[D].武汉:华中农业大学,2017. |
| 36 | 卢艺彬.雪柑实生苗生理生化及基因和microRNA表达对缺硼的响应[D].福州:福建农林大学,2015. |
| 37 | LIMA J C, ARENHART R A, MARGIS-PINHEIRO M, et al.. Aluminum triggers broad changes in microRNA expression in rice roots[J]. Genet. Mol. Res., 2011, 10(4): 2817-2832. |
| 38 | CHEN L, WANG T, ZHAO M, et al.. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing[J]. Planta, 2012, 235(2): 375-386. |
| 39 | 谭国胜.大豆响应铝胁迫miRNA的鉴定和GmPDR12基因的拟南芥异源表达[D].南京:南京大学,2015. |
| 40 | HUANG S C, LU G H, TANG C Y, et al.. The expression profiling of microRNAs reveals the differential mechanism of two contrasting soybean genotypes in response to aluminum stress[C]//Abstract Collection of Annual Conference of Jiangsu Genetics Society in 2016, 2016: 197-198. |
| 41 | 薛泽云.凤丹响应铜胁迫miRNAs的鉴定及其表达特性分析[D].南京:南京农业大学,2016. |
| 42 | 杜秋霞,李阳,郑丹艳,等.桑树中铜离子胁迫调控miRNA的全基因组分析[C]//江苏省遗传学会2019年学术研讨会论文集,2019. |
| 43 | 杨惠荔.外源Si,NO对铜胁迫下小麦幼苗的生理应答及相关miRNA的差异表达分析[D].新乡:河南师范大学,2019. |
| [1] | Jiangtao YANG, Yaohui HUANG, Zhixing WANG, Xujing WANG, Yue JIAO. Current Status of Research Application and Safety Regulation of Plant Bioreactors [J]. Current Biotechnology, 2025, 15(4): 565-572. |
| [2] | Yanyan JIA, Luyang DUANMU. Study on the Mechanism of Bubble Generation and Inhibition Method During Digital PCR Amplification Process [J]. Current Biotechnology, 2025, 15(4): 693-701. |
| [3] | Wenxuan PU, Xi DAI, Jiani YUE, Xiuxia FU, Na SONG, Wei LI, Yu PENG. Research Progress of Iron Signaling and its Role in Plant-pathogen Interaction [J]. Current Biotechnology, 2025, 15(1): 1-10. |
| [4] | Haixia PENG, Shijuan WANG, Zhuanxia XIN, Li MEI, Meng MA. A Low-cost, Efficient and Easy-to-operate Method for Transgenic Plant Identification [J]. Current Biotechnology, 2024, 14(6): 1016-1023. |
| [5] | Lin XIA, Xiangli XU, Xueyun WANG, Jun YANG, Mingzhu WU, Weiwu SONG. Research Progress on the Biosynthesis of Chlorogenic Acid in Plant [J]. Current Biotechnology, 2024, 14(6): 973-979. |
| [6] | Xinye WANG, Lei LI, Yahua HU, Huan HE, Hongxia LI, Qiong LI, Liang ZHAO, Gangrong ZHANG, Qi PAN, Xuan TANG, Pudi ZHANG, Wenjing JU, Zhengshuo YANG. Isolation and Screening of Phosphate Solubilizing Bacteria and its Growth-promoting Effect on Glutinous Sorghum for Brewing [J]. Current Biotechnology, 2024, 14(5): 832-838. |
| [7] | Yijun LI, Lin XIA, Xiaobei YANG, Xiaodong XIE, Feng LI, Jun YANG, Qianji NING, Mingzhu WU. Research Progress on Light-regulated Synthesis of Plant Polyphenols [J]. Current Biotechnology, 2024, 14(4): 509-518. |
| [8] | Dezheng YANG, Huixian FU, Suqin XIAO, Lingyun LEI, Tianshi LI, Zaiquan CHENG, Li LIU. Research Progress on Genetic Basis and Molecular Regulation Mechanism of Rice Plant Architecture [J]. Current Biotechnology, 2024, 14(3): 349-359. |
| [9] | Jiaqi SUN, Jia GUO, Chuang ZHANG, Qing LIU, Ziyu WANG, Hanchao XIA, Buxuan QIAN, Fangfang ZHAO, Qi WANG, Jianfeng LIU, Xiangguo LIU. Research Progress of Phosphite Dehydrogenase in Genetically Engineered Microorganisms and Plants [J]. Current Biotechnology, 2024, 14(2): 173-181. |
| [10] | Guowei YU, Hongbao XUE, Junsong YANG, Changqing LIU, Qiang FANG. Research Advances on Anti-obesity by Plant Essential Oil and Volatile Components [J]. Current Biotechnology, 2024, 14(2): 196-204. |
| [11] | Haitao WANG, Jia SONG, Ping YU, Xuejiao CHEN. Optimization of Preparation Technology of Lactiplantibacillus plantarum HCS03-001 Freeze-dried Powder and its Anti-Helicobacter pylori Function [J]. Current Biotechnology, 2024, 14(2): 287-294. |
| [12] | Lanlan ZHANG, Caihua LI, Yuzhu FANG, Yan SONG, Wanlin KANG, Zhiyu LI, Xiao ZHANG, Rui ZHANG. Progress on the Application of Mitochondrial SSR Molecular Markers in Plants [J]. Current Biotechnology, 2023, 13(6): 821-826. |
| [13] | Xujuan ZHANG, Pengxiang ZHAO, Ziyi LIU, Zisong CAI, Mengyu LIU, Fei XIE, Xuemei MA. Research Progress on the Immune Regulation of EBV on the Host [J]. Current Biotechnology, 2023, 13(5): 681-689. |
| [14] | Lanyi ZHI, Zhe LIU, Qiang WANG, Aimin SHI. Construction and Characterization of Plant-based Egg Liquid System [J]. Current Biotechnology, 2023, 13(5): 760-770. |
| [15] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||