Current Biotechnology ›› 2022, Vol. 12 ›› Issue (4): 532-538.DOI: 10.19586/j.2095-2341.2021.0198
• Reviews • Previous Articles Next Articles
Weisong GAO(
), Jinping DOU, Shuang WEI, Xingjian LIU, Zhifang ZHANG, Yinyu LI(
)
Received:2021-12-23
Accepted:2022-01-27
Online:2022-07-25
Published:2022-08-10
Contact:
Yinyu LI
高维崧(
), 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女(
)
通讯作者:
李轶女
作者简介:高维崧 E-mail:caasgaows@163.com;
基金资助:CLC Number:
Weisong GAO, Jinping DOU, Shuang WEI, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Classification and Research Status of CRISPR/Cas Systems[J]. Current Biotechnology, 2022, 12(4): 532-538.
高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538.
| 大类 | 型 | 亚型 | 包含的Cas蛋白 |
|---|---|---|---|
| 第一大类 | Ⅰ型 | Ⅰ⁃A、Ⅰ⁃B、Ⅰ⁃C、Ⅰ⁃D、Ⅰ⁃E、Ⅰ⁃F1、Ⅰ⁃F2、Ⅰ⁃F3 | Cas1、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8 |
| Ⅲ型 | Ⅲ⁃A、Ⅲ⁃B、Ⅲ⁃C、Ⅲ⁃D、Ⅲ⁃E、Ⅲ⁃F | Cas1、Cas2、Cas5、Cas6、Cas7、Cas10、Cas11 | |
| Ⅳ型 | Ⅳ⁃A、Ⅳ⁃B、Ⅳ⁃C | Cas1、Cas2、Cas5、Cas6、Cas7 | |
| 第二大类 | Ⅱ型 | Ⅱ⁃A、Ⅱ⁃B、Ⅱ⁃C1、Ⅱ⁃C2 | Cas1、Cas2、Cas4、Cas9 |
| Ⅴ型 | Ⅴ⁃A、Ⅴ⁃B1、Ⅴ⁃B2、Ⅴ⁃C、Ⅴ⁃D、Ⅴ⁃E、Ⅴ⁃F1、Ⅴ⁃F1(Ⅴ⁃U3)、Ⅴ⁃F2、Ⅴ⁃F3、Ⅴ⁃G、Ⅴ⁃U1、Ⅴ⁃U2、Ⅴ⁃U4、Ⅴ⁃K(Ⅴ⁃U5) | Cas1、Cas2、Cas4、Cas12 | |
| Ⅵ型 | Ⅵ⁃A、Ⅵ⁃B1、Ⅵ⁃B2、Ⅵ⁃C、Ⅵ⁃D | Cas1、Cas2、Cas13 |
Table 1 Subtypes and proteins contain in CRISPR /Cas systems[13]
| 大类 | 型 | 亚型 | 包含的Cas蛋白 |
|---|---|---|---|
| 第一大类 | Ⅰ型 | Ⅰ⁃A、Ⅰ⁃B、Ⅰ⁃C、Ⅰ⁃D、Ⅰ⁃E、Ⅰ⁃F1、Ⅰ⁃F2、Ⅰ⁃F3 | Cas1、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8 |
| Ⅲ型 | Ⅲ⁃A、Ⅲ⁃B、Ⅲ⁃C、Ⅲ⁃D、Ⅲ⁃E、Ⅲ⁃F | Cas1、Cas2、Cas5、Cas6、Cas7、Cas10、Cas11 | |
| Ⅳ型 | Ⅳ⁃A、Ⅳ⁃B、Ⅳ⁃C | Cas1、Cas2、Cas5、Cas6、Cas7 | |
| 第二大类 | Ⅱ型 | Ⅱ⁃A、Ⅱ⁃B、Ⅱ⁃C1、Ⅱ⁃C2 | Cas1、Cas2、Cas4、Cas9 |
| Ⅴ型 | Ⅴ⁃A、Ⅴ⁃B1、Ⅴ⁃B2、Ⅴ⁃C、Ⅴ⁃D、Ⅴ⁃E、Ⅴ⁃F1、Ⅴ⁃F1(Ⅴ⁃U3)、Ⅴ⁃F2、Ⅴ⁃F3、Ⅴ⁃G、Ⅴ⁃U1、Ⅴ⁃U2、Ⅴ⁃U4、Ⅴ⁃K(Ⅴ⁃U5) | Cas1、Cas2、Cas4、Cas12 | |
| Ⅵ型 | Ⅵ⁃A、Ⅵ⁃B1、Ⅵ⁃B2、Ⅵ⁃C、Ⅵ⁃D | Cas1、Cas2、Cas13 |
| 1 | ISHINO Y, SHINAGAWA H, MAKINO K, et al.. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J. Bacteriol., 1987, 169(12): 5429-5433. |
| 2 | MOJICA F J, DIEZ-VILLASENOR C, SORIA E, et al.. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria[J]. Mol. Microbiol., 2000, 36(1): 244-246. |
| 3 | SHE Q, SINGH R K, CONFALONIERI F, et al.. The complete genome of the crenarchaeon Sulfolobus solfataricus P2[J]. Proc. Natl. Acad. Sci. USA, 2001, 98(14): 7835-7840. |
| 4 | JANSEN R, EMBDEN J D, GAASTRA W, et al.. Identification of a novel family of sequence repeats among prokaryotes[J]. OMICS, 2002, 6(1): 23-33. |
| 5 | JANSEN R, EMBDEN J D A, GAASTRA W, et al.. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol. Microbiol., 2002, 43(6): 1565-1575. |
| 6 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
| 7 | CONG L, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
| 8 | KOBLAN L W, ERDOS M R, WILSON C, et al.. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843): 608-614. |
| 9 | MAKAROVA K S, GRISHIN N V, SHABALINA S A, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action[J/OL]. Biol. Direct., 2006, 1: 7[2022-04-18]. . |
| 10 | HAFT D H, SELENGUT J, MONGODIN E F, et al.. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes[J/OL]. PLoS Comput. Biol., 2005, 1(6): e60[2022-04-18]. . |
| 11 | MAKAROVA K S, HAFT D H, BARRANGOU R, et al.. Evolution and classification of the CRISPR-Cas systems[J]. Nat. Rev. Microbiol., 2011, 9(6): 467-477. |
| 12 | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al.. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat. Rev. Microbiol., 2015, 13(11): 722-736. |
| 13 | MAKAROVA K S, WOLF Y I, IRANZO J, et al.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat. Rev. Microbiol., 2019, 18(2): 67-83. |
| 14 | BURSTEIN D, HARRINGTON L B, STRUTT S C, et al.. New CRISPR-Cas systems from uncultivated microbes[J]. Nature, 2017, 542(7640): 237-241. |
| 15 | YAN W X, HUNNEWELL P, ALFONSE L E, et al.. Functionally diverse type V CRISPR-Cas systems[J]. Science, 2019, 363(6422): 88-91. |
| 16 | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J/OL]. Science, 2016, 353(6299): aaf5573[2022-04-18]. . |
| 17 | KOONIN E V, MAKAROVA K S. Origins and evolution of CRISPR-Cas systems[J/OL]. Philos. Trans. R Soc. Lond. B Biol. Sci., 2019, 374(1772): 20180087[2022-04-18]. . |
| 18 | NUNEZ J K, KRANZUSCH P J, NOESKE J, et al.. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity[J]. Nat. Struct. Mol. Biol., 2014, 21(6): 528-534. |
| 19 | MAKAROVA K S, WOLF Y I, KOONIN E V. The basic building blocks and evolution of CRISPR-CAS systems[J]. Biochem. Soc. Trans., 2013, 41(6): 1392-1400. |
| 20 | SINKUNAS T, GASIUNAS G, FREMAUX C, et al.. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. EMBO J., 2011, 30(7): 1335-1342. |
| 21 | KIEPER S N, ALMENDROS C, HAAGSMA A C, et al.. Cas4-Cas1 is a protospacer adjacent motif-processing factor mediating half-site spacer integration during CRISPR adaptation[J]. CRISPR J., 2021, 4(4): 536-548. |
| 22 | LI M, WANG R, ZHAO D, et al.. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process[J]. Nucl. Acids Res., 2014, 42(4): 2483-2492. |
| 23 | PLAGENS A, TJADEN B, HAGEMANN A, et al.. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax [J]. J. Bacteriol., 2012, 194(10): 2491-500. |
| 24 | NAM K H, HAITJEMA C, LIU X, et al.. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system[J]. Structure, 2012, 20(9): 1574-84. |
| 25 | BROUNS S J J, JORE M M, LUNDGREN M, et al.. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960-964. |
| 26 | CATCHPOLE R J, TERNS M P. New Type Ⅲ CRISPR variant and programmable RNA targeting tool: Oh, thank heaven for Cas7-11[J]. Mol. Cell, 2021, 81(21): 4354-4356. |
| 27 | MAKAROVA K S, KARAMYCHEVA S, SHAH S A, et al.. Predicted highly derived class 1 CRISPR-Cas system in Haloarchaea containing diverged Cas5 and Cas7 homologs but no CRISPR array[J/OL]. FEMS Microbiol. Lett., 2019, 366(7): fnz079[2022-04-18]. . |
| 28 | OZCAN A, PAUSCH P, LINDEN A, et al.. Type Ⅳ CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum[J]. Nat. Microbiol., 2019, 4(1): 89-96. |
| 29 | KOSLOVA A, TREFIL P, MUCKSOVA J, et al.. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(4): 2108-2112. |
| 30 | DOUGLAS C, MACIULYTE V, ZOHREN J, et al.. CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes[J/OL]. Nat. Commun., 2021, 12(1): 6926[2022-04-18]. . |
| 31 | 曹巧,史占良,张国丛,等.CRISPR/Cas9技术在小麦育种中的应用进展[J].生物技术进展,2021,11(6):661-667. |
| 32 | VOSS-FELS K P, STAHL A, HICKEY L T. Q&A: modern crop breeding for future food security[J/OL]. BMC Biol., 2019, 17(1): 18[2022-04-18]. . |
| 33 | MIAO C, XIAO L, HUA K, et al.. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(23): 6058-6063. |
| 34 | MONTE D F M, NETHERY M A, BARRANGOU R, et al.. Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources[J/OL]. Food Microbiol., 2021, 93: 103601[2022-04-18]. . |
| 35 | FUJITA T, FUJII H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR[J]. Biochem. Biophys. Res. Commun., 2013, 439(1): 132-136. |
| 36 | BIKARD D, JIANG W, SAMAI P, et al.. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J]. Nucl. Acids Res., 2013, 41(15): 7429-7437. |
| 37 | HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. |
| 38 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
| 39 | 李树磊,徐妙云,郑红艳,王磊.CRISPR/Cpf1单碱基编辑系统的构建及应用[J].生物技术进展,2021,11(6):732-740. |
| 40 | GAO P, YANG H, RAJASHANKAR K R, et al.. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition[J]. Cell Res., 2016, 26(8): 901-913. |
| 41 | JIAO J, KONG K, HAN J, et al. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay[J]. Plant Biotechnol. J., 2021, 19(2): 394-405. |
| 42 | LIU H, WANG J, ZENG H, et al.. RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification[J/OL]. Food Chem., 2021, 334: 127608[2022-04-18]. . |
| 43 | MAYURAMART O, NIMSAMER P, RATTANABURI S, et al.. Detection of severe acute respiratory syndrome coronavirus 2 and influenza viruses based on CRISPR-Cas12a[J]. Exp. Biol. Med., 2021, 246(4): 400-405. |
| 44 | HE C, LIN C, MO G, et al.. Rapid and accurate detection of SARS-CoV-2 mutations using a Cas12a-based sensing platform[J/OL]. Biosens. Bioelectron., 2021, 198: 113857[2022-04-18]. . |
| 45 | WU Y, BATTALAPALLI D, HAKEEM M J, et al.. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections[J/OL]. J. Nanobiotechnol., 2021, 19(1): 401[2022-04-18]. . |
| 46 | ZHANG B, YE W, YE Y, et al.. Structural insights into Cas13b-guided CRISPR RNA maturation and recognition[J]. Cell Res., 2018, 28(12): 1198-1201. |
| 47 | 谢宇宙,付伟,闫超杰,等.基于CRISPR/Cas原理的转基因产品检测技术研究进展[J].生物技术进展,2021,11(4):430-437. |
| 48 | KANNAN S, ALTAE-TRAN H, JIN X, et al.. Compact RNA editors with small Cas13 proteins[J]. Nat. Biotechnol., 2021:40(2):194-197. |
| 49 | KHAN W A, BARNEY R E, TSONGALIS G J. CRISPR-cas13 enzymology rapidly detects SARS-CoV-2 fragments in a clinical setting[J/OL]. J. Clin. Virol., 2021, 145: 105019[2022-04-18]. . |
| 50 | LI S, ZHANG H, ZHANG L, et al.. LinearTurboFold: Linear-time global prediction of conserved structures for RNA homologs with applications to SARS-CoV-2[J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(52):e2116269118[2022-04-18]. . |
| [1] | Yiyang LI, Zhizheng ZHOU, Shufei WANG, Boya LIU, Yufei LIU, Xiaoyan LI, Hongshu SUI, Dongwei LIU. Application and Prospect of CRISPR/Cas9 Gene Editing Technology in Disease Treatment [J]. Current Biotechnology, 2025, 15(1): 35-42. |
| [2] | Guang HU, Zhi WANG, Wei FU, Yuting SHI, Shanshan CHEN, Liang LUO, Shuang WEI. Establishment of Detection Method Based on TaqMan Real-time Fluorescence Quantitative PCR Technology for OsWx-edited Rice [J]. Current Biotechnology, 2025, 15(1): 86-92. |
| [3] | Caihua LI, Yankun ZHAO, Zhankun LI, Zilong SHAN, Qiao CAO, Liang MA, Fei WANG, Zhenxian GAO. Research Progress on Rht Genes in Wheat [J]. Current Biotechnology, 2024, 14(6): 980-992. |
| [4] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. |
| [5] | Mingyang JIA, Lei WANG, Junfeng CHEN, Jiaqing ZHANG, Xiangzhou YAN, Baosong XING, Jing WANG. Research Progress of CRISPR/Cas9 Gene Editing Technology in Livestock and Poultry Breeding [J]. Current Biotechnology, 2024, 14(4): 529-536. |
| [6] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. |
| [7] | Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish [J]. Current Biotechnology, 2023, 13(4): 485-491. |
| [8] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. |
| [9] | Hui SUN, Chunyi ZHANG, Ling JIANG. Progress of Plant Molecular Farming in Pharmaceutical Use [J]. Current Biotechnology, 2023, 13(1): 65-71. |
| [10] | Yang YANG, Fenglin WANG, De LIU, Yuanyuan LUO, Jianhua ZHU. Research Progress of CRISPR⁃Cas9 Technology on the Production of Plant Secondary Metabolites [J]. Current Biotechnology, 2022, 12(6): 806-816. |
| [11] | Kun YU, Jiaqi XUE, Jinkuan WANG, Yongtao YU. Research Progress on Application of CRISPR/Cas9 Gene Editing Technique in Filamentous Fungi [J]. Current Biotechnology, 2022, 12(5): 696-704. |
| [12] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. |
| [13] | Yaohui HUANG, Yijie WANG, Litao YANG, Yue JIAO, Zhongwen FU. Safety Management of the Crop Produced by New Breeding Techniques [J]. Current Biotechnology, 2022, 12(2): 198-204. |
| [14] | Mengyu WANG, Haoqian WANG, Xujing WANG, Zhixing WANG. Research Progress of Gene Editing Products Detection Technology [J]. Current Biotechnology, 2021, 11(4): 438-445. |
| [15] | GERILEQIMUGE, NIU Zhenfeng, DONG Dan, ZHANG Taotao, ZHENG Rong. Application Progress of CRISPR-Cas System in Microbial Research [J]. Current Biotechnology, 2021, 11(3): 253-259. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||