Current Biotechnology ›› 2025, Vol. 15 ›› Issue (2): 247-253.DOI: 10.19586/j.2095-2341.2024.0152
• Reviews • Previous Articles Next Articles
					
													Ruoliu ZHANG1,2( ), Mingwei BAO1,2(
), Mingwei BAO1,2( )
)
												  
						
						
						
					
				
Received:2024-09-18
															
							
															
							
																	Accepted:2024-12-30
															
							
																	Online:2025-03-25
															
							
																	Published:2025-04-29
															
						Contact:
								Mingwei BAO   
													通讯作者:
					包明威
							作者简介:张若柳 E-mail: zhangrl5216@163.com;
				
							基金资助:CLC Number:
Ruoliu ZHANG, Mingwei BAO. Research Progress on the Role of Toll-like Receptor 7 in Cardiovascular Diseases[J]. Current Biotechnology, 2025, 15(2): 247-253.
张若柳, 包明威. Toll样受体7在心血管疾病中的作用研究进展[J]. 生物技术进展, 2025, 15(2): 247-253.
| 1 | VOS T, LIM S S, ABBAFATI C, et al.. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. | 
| 2 | National Center For Cardiovascular Diseases The Writing Committee Of The Report On Cardiovascular Health And Diseases In China. Report on cardiovascular health and diseases in China 2023: an updated summary[J]. Biomed. Environ. Sci., 2024, 37(9): 949-992. | 
| 3 | HAMADE H, TSUDA M, OSHIMA N, et al.. Toll-like receptor 7 protects against intestinal inflammation and restricts the development of colonic tissue-resident memory CD8+ T cells[J/OL]. Front. Immunol., 2024, 15: 1465175[2025-02-17]. . | 
| 4 | MAZZARINO M, CETIN E, BARTOSOVA M, et al.. Therapeutic targeting of chronic kidney disease-associated DAMPs differentially contributing to vascular pathology[J/OL]. Front. Immunol., 2023, 14: 1240679[2025-02-17]. . | 
| 5 | 段兴鹏,刘景丽,王澈,等.巨噬细胞清道夫受体与Toll样受体对Ox-LDL摄取和炎症的影响[J].生物技术进展,2024,14(4):668-675. | 
| DUAN X P, LIU J L, WANG C, et al.. Effects of macrophage scavenger receptors and toll-like receptors on OxLDL uptake and inflammation[J]. Curr. Biotechnol., 2024, 14(4): 668-675. | |
| 6 | Correction to: unravelling the heart's comic drama: can TLRs and hyaluronan metabolism stoke neutrophil rage in acute coronary syndrome?[J/OL]. Eur. Heart J., 2023, 44(47): 4964[2025-02-17]. . | 
| 7 | CHEN L, TANG W, LIU J, et al.. On-demand reprogramming of immunosuppressive microenvironment in tumor tissue via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immunotherapy using engineered gold nanoparticles for malignant tumor treatment[J/OL]. Biomaterials, 2025, 315: 122956[2025-02-17]. . | 
| 8 | AN S, OH J, JSHON H, et al.. Co-adjuvanting Nod2-stimulating bacteria with a TLR7 agonist elicits potent protective immunity against respiratory virus infection[J/OL]. Int. J. Antimicrob. Agents, 2024, 64(6): 107369[2025-02-17]. . | 
| 9 | PUNNANITINONT A, BISWAS S, KASPEREK E M, et al.. Tlr7 drives sex- and tissue-dependent effects in Sjögren's disease[J/OL]. Front. Cell Dev. Biol., 2024, 12: 1434269[2025-02-17]. . | 
| 10 | SALVI V, GAUDENZI C, MARIOTTI B, et al.. Cell damage shifts the microRNA content of small extracellular vesicles into a Toll-like receptor 7-activating cargo capable to propagate inflammation and immunity[J/OL]. Cell Commun. Signal., 2024, 22(1): 536[2025-02-17]. . | 
| 11 | MEDZHITOV R, PRESTON-HURLBURT P, JANEWAY C A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[J]. Nature, 1997, 388(6640): 394-397. | 
| 12 | POLTORAK A, HE X, SMIRNOVA I, et al.. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J]. Science, 1998, 282(5396): 2085-2088. | 
| 13 | WICHERSKA-PAWŁOWSKA K, WRÓBEL T, RYBKA J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases[J/OL]. Int. J. Mol. Sci., 2021, 22(24): 13397[2025-02-17]. . | 
| 14 | GHOSH S K, SAHA B, BANERJEE R. Insight into the sequence-structure relationship of TLR cytoplasm's toll/interleukin-1 receptor domain towards understanding the conserved functionality of TLR2 heterodimer in mammals[J]. J. Biomol. Struct. Dyn., 2021, 39(15): 5348-5357. | 
| 15 | FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066. | 
| 16 | ZHOU R, LIU L, WANG Y. Viral proteins recognized by different TLRs[J]. J. Med. Virol., 2021, 93(11): 6116-6123. | 
| 17 | HE L, HAN G, WU S, et al.. Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons[J]. Brain Behav. Immun., 2020, 87: 840-851. | 
| 18 | PELKA K, BERTHELOOT D, REIMER E, et al.. The chaperone UNC93B1 regulates toll-like receptor stability independently of endosomal TLR transport[J]. Immunity, 2018, 48(5): 911-922. | 
| 19 | MAJER O, LIU B, KREUK L S M, et al.. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity[J]. Nature, 2019, 575(7782): 366-370. | 
| 20 | DAVID C, ARANGO-FRANCO C A, BADONYI M, et al.. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus[J/OL]. J. Exp. Med., 2024, 221(8): e20232066[2025-02-17]. . | 
| 21 | GOSWAMI R, NABAWY A, JIANG M, et al.. All-natural gelatin-based nanoemulsion loaded with TLR7/8 agonist for efficient modulation of macrophage polarization for immunotherapy[J/OL]. Nanomaterials, 2024, 14(19): 1556[2025-02-17]. . | 
| 22 | DE GROOT N G, BONTROP R E. COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males?[J]. Immunogenetics, 2020, 72(5): 275-277. | 
| 23 | MISHRA H, SCHLACK-LEIGERS C, LIM E L, et al.. Disrupted degradative sorting of TLR7 is associated with human lupus[J/OL]. Sci. Immunol., 2024, 9(92): eadi9575[2025-02-17]. . | 
| 24 | BROWN G J, CAÑETE P F, WANG H, et al.. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature, 2022, 605(7909): 349-356. | 
| 25 | MCCROREY M K, HAWKINS K P, SEMENIKHINA M, et al.. A novel preclinical murine model of systemic lupus erythematosus-like cardiovascular disease[J]. ACR Open Rheumatol., 2024, 6(12): 891-899. | 
| 26 | YOKOGAWA M, TAKAISHI M, NAKAJIMA K, et al.. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic lupus erythematosus[J]. Arthritis Rheumatol., 2014, 66(3): 694-706. | 
| 27 | ZHANG Y, CUI H, ZHAO M, et al.. Cardiomyocyte-derived small extracellular vesicle-transported let-7b-5p modulates cardiac remodeling via TLR7 signaling pathway[J/OL]. FASEB J., 2024, 38(22): e70196[2025-02-17]. . | 
| 28 | KROGMANN AO, LÜSEBRINK E, LAHRMANN C, et al.. Toll-like receptor 7 stimulation promotes the development of atherosclerosis in apolipoprotein E-deficient mice[J]. Int. Heart J., 2020, 61(2): 364-372. | 
| 29 | KARPER J C, EWING M M, HABETS K L L, et al.. Blocking Toll-like receptors 7 and 9 reduces postinterventional remodeling via reduced macrophage activation, foam cell formation, and migration[J]. Arterioscler. Thromb. Vasc. Biol., 2012, 32(8): 72-80. | 
| 30 | SALAGIANNI M, GALANI I E, LUNDBERG A M, et al.. Toll-like receptor 7 protects from atherosclerosis by constraining "inflammatory" macrophage activation[J]. Circulation, 2012, 126(8): 952-962. | 
| 31 | KARADIMOU G, FOLKERSEN L, BERG M, et al.. Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events[J]. Cardiovasc. Res., 2017, 113(1): 30-39. | 
| 32 | KARADIMOU G, GISTERÅ A, GALLINA A L, et al.. Treatment with a Toll-like receptor 7 ligand evokes protective immunity against atherosclerosis in hypercholesterolaemic mice[J]. J. Intern. Med., 2020, 288(3): 321-334. | 
| 33 | ZHANG Y, ZHOU X, CHEN S, et al.. Immune mechanisms of group B coxsackievirus induced viral myocarditis[J/OL]. Virulence, 2023, 14(1): 2180951[2025-02-17]. . | 
| 34 | JIANG Z, LI Z, CHEN Y, et al.. MLN4924 alleviates autoimmune myocarditis by promoting Act1 degradation and blocking Act1-mediated mRNA stability[J/OL]. Int. Immunopharmacol., 2024, 139: 112716[2025-02-17]. . | 
| 35 | PEREZ-SHIBAYAMA C, GIL-CRUZ C, CADOSCH N, et al.. Bone morphogenic protein-4 availability in the cardiac microenvironment controls inflammation and fibrosis in autoimmune myocarditis[J]. Nat. Cardiovasc. Res., 2024, 3(3): 301-316. | 
| 36 | HASHAM M G, BAXAN N, STUCKEY D J, et al.. Systemic autoimmunity induced by the TLR7/8 agonist resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease[J]. Dis. Model. Mech., 2017, 10(3): 259-270. | 
| 37 | FUSE K, CHAN G, LIU Y, et al.. Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of coxsackievirus B3-induced myocarditis and influences type I interferon production[J]. Circulation, 2005, 112(15): 2276-2285. | 
| 38 | PAGNI P P, TRAUB S, DEMARIA O, et al.. Contribution of TLR7 and TLR9 signaling to the susceptibility of MyD88-deficient mice to myocarditis[J]. Autoimmunity, 2010, 43(4): 275-287. | 
| 39 | VON HOFSTEN S, FENTON K A, PEDERSEN H L. Human and murine toll-like receptor-driven disease in systemic lupus erythematosus[J/OL]. Int. J. Mol. Sci., 2024, 25(10): 5351[2025-02-17]. . | 
| 40 | MOLEÓN J, GONZÁLEZ-CORREA C, MIÑANO S, et al.. Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation[J/OL]. Pharmacol. Res., 2023, 198: 106997[2025-02-17]. . | 
| 41 | CHAUDHARI S, D'SOUZA B M, MORALES J Y, et al.. Renal TLR-7/TNF-α pathway as a potential female-specific mechanism in the pathogenesis of autoimmune-induced hypertension[J]. Am. J. Physiol. Heart Circ. Physiol., 2022, 323(6): 1331-1342. | 
| 42 | GONZÁLEZ-CORREA C, MOLEÓN J, MIÑANO S, et al.. Trimethylamine N-oxide promotes autoimmunity and a loss of vascular function in toll-like receptor 7-driven lupus mice[J/OL]. Antioxidants, 2021, 11(1): 84[2025-02-17]. . | 
| 43 | ROBLES-VERA I, VISITACIÓN N D L, TORAL M, et al.. Toll-like receptor 7-driven lupus autoimmunity induces hypertension and vascular alterations in mice[J]. J. Hypertens., 2020, 38(7): 1322-1335. | 
| 44 | DE LA VISITACIÓN N, ROBLES-VERA I, MOLEÓN J, et al.. Gut microbiota has a crucial role in the development of hypertension and vascular dysfunction in toll-like receptor 7-driven lupus autoimmunity[J/OL]. Antioxidants, 2021, 10(9): 1426[2025-02-17]. . | 
| 45 | DE LA VISITACIÓN N, ROBLES-VERA I, MOLEÓN-MOYA J, et al.. Probiotics prevent hypertension in a murine model of systemic lupus erythematosus induced by toll-like receptor 7 activation[J/OL]. Nutrients, 2021, 13(8): 2669[2025-02-17]. . | 
| 46 | CHATTERJEE P, CHIASSON V L, PINZUR L, et al.. Human placenta-derived stromal cells decrease inflammation, placental injury and blood pressure in hypertensive pregnant mice[J]. Clin. Sci., 2016, 130(7): 513-523. | 
| 47 | HARWANI S C, CHAPLEAU M W, LEGGE K L, et al.. Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension[J]. Circ. Res., 2012, 111(9): 1190-1197. | 
| 48 | KARIOTIS S, JAMMEH E, SWIETLIK E M, et al.. Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood[J/OL]. Nat. Commun., 2021, 12(1): 7104[2025-02-17]. . | 
| 49 | JONES R J, DE BIE E M D D, GROVES E, et al.. Autoimmunity is a significant feature of idiopathic pulmonary arterial hypertension[J]. Am. J. Respir. Crit. Care Med., 2022, 206(1): 81-93. | 
| 50 | RHEE R L, GABLER N B, SANGANI S, et al.. Comparison of treatment response in idiopathic and connective tissue disease-associated pulmonary arterial hypertension[J]. Am. J. Respir. Crit. Care Med., 2015, 192(9): 1111-1117. | 
| 51 | YEH F C, CHEN C N, XIE C Y, et al.. TLR7/8 activation induces autoimmune vasculopathy and causes severe pulmonary arterial hypertension[J/OL]. Eur. Respir. J., 2023, 62(1): 2300204[2025-02-17]. . | 
| 52 | ZHANG L, ZENG X X, LI Y M, et al.. Keratin 1 attenuates hypoxic pulmonary artery hypertension by suppressing pulmonary artery media smooth muscle expansion[J/OL]. Acta Physiol., 2021, 231(2): e13558[2025-02-17]. . | 
| 53 | WANG J, CHEN J, SHU L, et al.. Carotid baroreceptor stimulation improves pulmonary arterial remodeling and right ventricular dysfunction in pulmonary arterial hypertension[J]. JACC Basic Transl. Sci., 2024, 9(4): 475-492. | 
| 54 | TOJO S, ZHANG Z, MATSUI H, et al.. Structural analysis reveals TLR7 dynamics underlying antagonism[J/OL]. Nat. Commun., 2020, 11(1): 5204[2025-02-17]. . | 
| 55 | HEMMI H, KAISHO T, TAKEUCHI O, et al.. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway[J]. Nat. Immunol., 2002, 3(2): 196-200. | 
| 56 | ABT M C, BUFFIE C G, SUŠAC B, et al.. TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant Enterococcus [J/OL]. Sci. Transl. Med., 2016, 8(327): 327ra25[2025-02-17]. . | 
| 57 | SUN H, LI Y, ZHANG P, et al.. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives[J/OL]. Biomark. Res., 2022, 10(1): 89[2025-02-17]. . | 
| 58 | QI S, ZHANG X, YU X, et al.. Supramolecular lipid nanoparticles based on host-guest recognition: a new generation delivery system of mRNA vaccines for cancer immunotherapy[J/OL]. Adv. Mater., 2024, 36(23): e2311574[2025-02-17]. . | 
| 59 | LAI C Y, SU Y W, LIN K I, et al.. Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation[J/OL]. J. Immunol. Res., 2017, 2017: 7807313[2025-02-17]. . | 
| 60 | CENAC C, DUCATEZ M F, CGUÉRY J. Hydroxychloroquine inhibits proteolytic processing of endogenous TLR7 protein in human primary plasmacytoid dendritic cells[J]. Eur. J. Immunol., 2022, 52(1): 54-61. | 
| 61 | PORT A, SHAW J V, KLOPP-SCHULZE L, et al.. Phase 1 study in healthy participants of the safety, pharmacokinetics, and pharmacodynamics of enpatoran (M5049), a dual antagonist of toll-like receptors 7 and 8[J/OL]. Pharmacol. Res. Perspect., 2021, 9(5): e00842[2025-02-17]. . | 
| [1] | Yu DING, Bo ZHAO, Jin ZHANG, Xudong GAO. The Role of SIRT1 Deacetylation Modification in Regulating HMGB1-mediated Pyroptosis in Chronic Sinusitis with Nasal Polyps [J]. Current Biotechnology, 2025, 15(3): 535-543. | 
| [2] | Lingling XIAO, Mingwei BAO. Roles of Interleukin-22 in Cardiovascular Disease [J]. Current Biotechnology, 2024, 14(5): 820-824. | 
| [3] | Xingpeng DUAN, Jingli LIU, Che WANG, Dejing SHANG. Effects of Macrophage Scavenger Receptors and Toll-like Receptors on Ox-LDL Uptake and Inflammation [J]. Current Biotechnology, 2024, 14(4): 668-675. | 
| [4] | Jianhong YANG, Boyan LIU, Jun CHEN, Zhihui QIU, Baoqiang LI, Shucun QIN, Yandong NIU, Lei HE. Effects of Pre-treatment of Nanobubble Hydrogen Water on the Mouse Psoriasis Induction by Imiquimod [J]. Current Biotechnology, 2024, 14(4): 676-684. | 
| [5] | Yipeng LIANG, Di WANG, Haoze SONG, Lihong SHI, Jingyuan TONG. Identification of Immunoregulatory Factors in the Development of Myeloproliferative Neoplasms by Bioinformatics [J]. Current Biotechnology, 2024, 14(3): 492-500. | 
| [6] | Jingyi ZHANG, Xue JIANG, Siyu MA, Zhichao FENG, Yang YI, Chen MA, Yifei SONG, Fei XIE. Research Progress on the Protective Effects of Hydrogen Gas on Traumatic Brain Injury [J]. Current Biotechnology, 2023, 13(2): 234-239. | 
| [7] | Jun CHEN, Shucun QIN, Lei HE. Inhibiting Effect of Hydrogen-rich Saline on Psoriasis in Imiquimod-induced Mouse Models [J]. Current Biotechnology, 2022, 12(4): 503-509. | 
| [8] | YUAN Qifeng, YAO Baozhen*. Progress of Abnormal Glutamate-glutamine Cycle in Autism Spectrum Disorders [J]. Curr. Biotech., 2021, 11(2): 170-175. | 
| [9] | JU Fangdi1§, XIE Fei1§*, GUO Dazhi2§, ZHAO Qinghui1, HE Jin1, YAO Tingting1, ZHAO Pengxiang1, PAN Shuyi2*, MA Xuemei1*. Inhibitory Effect of Hydrogen Inhalation on Acute Inflammation in Rats with Traumatic Brain Injury [J]. Curr. Biotech., 2020, 10(5): 541-549. | 
| [10] | LIU Shibo1, WU Hao1, HONG Jiao2, LIU Mengyu1, YAO Mawulikplimi Adzavon1, ZHAO Pengxiang1*. Advances in the Study of Inflammation-tumor Transformation in Ocular Diseases [J]. Curr. Biotech., 2020, 10(3): 234-241. | 
| [11] | CAO Xiaoya1, XU Fuzhou1, GUO Jie1, WEN Tong2, SU Xia1, ZHOU Hongzhuan1, YANG Bing1, CUI Yifang1, GUO Fangfang 1*. Progress in Application of Toll-like Receptor 3 Agonist in Vaccine Adjuvant [J]. Curr. Biotech., 2020, 10(2): 144-151. | 
| [12] | ZHAO Qinghui, LUO Qiuli, JU Fangdi, HE Jin, YAO Tingting, MA Shengnan, XUN Zhiming, ZHAO Pengxiang, XIE Fei*. Research Progress on Neuroinflammation-related Cells in Traumatic Brain Injury [J]. Curr. Biotech., 2020, 10(1): 23-29. | 
| [13] | LIU Zi-yan, TIAN Hang-yu, XING Wen-xi, LIU Yue-tong, LI Ming*. Advances in Biological Activity of Cyclophilin A [J]. Curr. Biotech., 2014, 4(6): 405-410. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||