Current Biotechnology ›› 2025, Vol. 15 ›› Issue (1): 58-66.DOI: 10.19586/j.2095-2341.2024.0158
• Reviews • Previous Articles Next Articles
Xiaoni HOU(
), Mingdong LIU, Hao LYU, Deping YE, Lixia MA, Lihua ZHOU(
)
Received:2024-09-29
Accepted:2024-11-13
Online:2025-01-25
Published:2025-03-07
Contact:
Lihua ZHOU
侯晓妮(
), 刘明东, 吕昊, 叶德萍, 马丽侠, 周李华(
)
通讯作者:
周李华
作者简介:侯晓妮 E-mail:houxn1998@126.com;
基金资助:CLC Number:
Xiaoni HOU, Mingdong LIU, Hao LYU, Deping YE, Lixia MA, Lihua ZHOU. Research Progress on Measuring Technology of Bio-enzyme Activity[J]. Current Biotechnology, 2025, 15(1): 58-66.
侯晓妮, 刘明东, 吕昊, 叶德萍, 马丽侠, 周李华. 生物酶活性测试技术研究进展[J]. 生物技术进展, 2025, 15(1): 58-66.
| 1 | 仲晨,赵彬旭,刘梅,等.酶固定化技术及其在食品工业的应用进展[J].生物技术进展,2024,14(4):537-544. |
| ZHONG C, ZHAO B X, LIU M, et al.. Enzymes immobilization technology and its application progress in food industry[J]. Curr. Biotechnol., 2024, 14(4): 537-544. | |
| 2 | VISWANATH B, RAJESH B, JANARDHAN A,et al..Fungal laccases and their applications in bioremediation[J]. Enzyme Res., 2014, 2014: 163242. |
| 3 | 刘智,杜晓宏,柴文刚.异常凝血酶原对肝细胞癌的诊断效能及其与肿瘤临床特征的相关性分析[J].临床肝胆病杂志,2024,40(10): 2014-2018. |
| LIU Z, DU X H, CHAI W G. Efficacy of des-γ-carboxy-prothrombin in the diagnosis of hepatocellular carcinoma and its association with the clinical feature of hepatocellular carcinoma[J]. J. Clin. Hepatol., 2024,40(10): 2014-2018. | |
| 4 | 王婉洁,陈南珠,郝海生,等.组蛋白甲基转移酶ASH2的研究进展[J].生物技术进展,2022,12(1): 27-35. |
| WANG W J, CHEN N Z, HAO H S, et al.. Research progress of histone methyltransferases ASH2[J]. Curr. Biotechnol., 2022,12(1):27-35. | |
| 5 | 周亚梅,刘佳,陆丹,等.脂肪酶的固定化及其在药物合成中的应用进展[J].生物技术进展,2023,13(2):220-227. |
| ZHOU Y M, LIU J, LU D, et al.. Progress on lipase immobilization and its application in pharmaceutical synthesis[J]. Curr. Biotechnol., 2023, 13(2): 220-227. | |
| 6 | 司奇,胡雨,戴静,等.微生物源溶菌酶的抑菌及抗炎活性[J].食品研究与开发,2024,45(4): 68-73, 88. |
| SI Q, HU Y, DAI J, et al.. Antimicrobial and anti-inflammatory activities of microbial lysozyme[J]. Food Res. Dev., 2024, 45(4): 68-73, 88. | |
| 7 | 杨永昌,常帅,赵欣宇.CRISPR-Cas介导基因编辑技术的发展趋势及研究进展[J].现代医学与健康研究,2022,6(6):131-136. |
| YANG Y C, CHANG S, ZHAO X Y. Development tendency and research progress of CRISPR-CAS-based genome engineering[J]. Modern Med. Health Res., 2022, 6(6):131-136. | |
| 8 | 国家药典委员会.中华人民共和国药典-四部:2020年版[M].北京:中国医药科技出版社,2020. |
| 9 | 国家市场监督管理总局,国家标准化管理委员会. 超氧化物歧化酶活性检测方法: [S].北京:中国标准出版社,2022-10-12. |
| 10 | 国家药典委员会.中华人民共和国药典-二部:2020年版[M].北京:中国医药科技出版社,2020. |
| 11 | 王君.酶工程试验指导[M].北京:化学工业出版社,2023. |
| WANG J. Enzyme engineering test guidance[M]. Beijing: Chemical Industry Press, 2023. | |
| 12 | 胡云瑶,谭鹏,杨婷,等.4种消食中药的质量生物活性测定方法研究:消化酶种类选择与活力效价测定[J].中草药,2023,54(7): 2106-2113. |
| HU Y Y, TAN P, YANG T, et al.. Study on determination methods of biological activity of quality of four kinds of Chinese herbal medicine for digestion: Selection of digestive enzymes and determination of activity potency[J]. Chin. Trad. Herbal Drugs, 2023,54(7): 2106-2113. | |
| 13 | 张莹,孔祥.紫外分光光度法测定沙雷肽酶效价[J].天津药学,2002,14(4): 74-75. |
| ZHANG Y, KONG X L. Determination of the potency of Serratidase by Spectrophotometric[J]. Tianjin Pharm., 2002, 14(4):74-75. | |
| 14 | 刘元元,徐泽平.阿魏酸酯酶活性的分光光度法测定及其影响因素研究[J]. 食品工业科技,2013,34(13): 284-288. |
| LIU Y Y, XU Z P. Study on the determination of ferulic acid esterase enzyme activity with spectrophotometer method and its impact factors[J]. Sci. Technol. Food Ind., 2013, 34(13): 284-288. | |
| 15 | 郑桂花,赵倩,汪璨,等.丝氨酸羟甲基转移酶活测定及酶学性质研究[J].湖北农业科学,2016,55(7): 1788-1790. |
| ZHENG G H, ZHAO Q, WANG C, et al.. Detection and characterization of serine hydroxymethyltransferase activity[J]. Hubei Agric. Sci., 2016,55(7):1788-1790. | |
| 16 | SCHUMANN G, BONORA R, CERIOTTI F, et al.. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 ℃. part 2. reference procedure for the measurement of catalytic concentration of creatine kinase[J]. Clin. Chem. Lab Med., 2002, 40(6): 635-642. |
| 17 | SAC/SWG 11. 聚合酶[S]. 北京:中国标准出版社, 2018. |
| 18 | 国家市场监督管理总局,国家标准化管理委员会. M-MLV反转录酶: [S].北京:中国标准出版社,2018. |
| 19 | 董莉,姜婷婷,周宇荀,等.端粒酶活性多重荧光定量PCR(Taqman探针)检测方法的建立与验证[J].中国生物制品学杂志,2023,36(10):1218-1223. |
| DONG L, JIANG T T, ZHOU Y X, et al.. Development and verification of multiplex fluorescence quantitative PCR (Taqman probe) for detection of telomerase activity[J]. Chin. J. Biol., 2023, 36(10): 1218-1223. | |
| 20 | 潘丽平.超灵敏检测DNA糖基化酶和microRNA的荧光方法研究[D].济南:山东师范大学, 2013. |
| PAN L P. Fluorescence sensitive detection of DNA glycosylase and microRNA[D]. Jinan: Shandong Normal University, 2013. | |
| 21 | 任婧怡. 超灵敏检测组蛋白乙酰化修饰酶p300和多聚(ADP-核糖)聚合酶-1的荧光方法研究[D].济南:山东师范大学,2023. |
| REN J Y. Development of fluorescent methods for sensitive detection of histone acetylation writer p300 and poly(ADP-ribose) polymerase-1[D]. Jinan: Shandong Normal University, 2023. | |
| 22 | BISSWANGER H.Enzyme Kinetics: Principles and Methods[M]. Wiley-VCH Verlag, 2002. |
| 23 | 国家质量监督检验检疫总局,中国国家标准化管理委员会. 脂肪酶制剂: [S].北京:中国标准出版社,2009. |
| 24 | 李脉,杨继国,杨博.磷脂酶A1酶活测定方法的研究[J]. 现代食品科技,2007,23(8):80-82. |
| LI M, YANG J G, YANG B. Studies on the measurement of the enzymatic activity of phospholipase A1[J]. Modern Food Sci. Technol., 2007, 23(8): 80-82. | |
| 25 | TIAN G Z, LI W T, LIU B, et al.. An enzyme-free electrochemical biosensor based on NiCoP@PtCu nanozyme and multi-MNAzyme junctions for ultrasensitive Uracil-DNA glycosylase detection[J/OL]. Sens. Actuat. B Chem., 2023, 379: 133224[2024-11-10]. . |
| 26 | JIANG J, LIN X, DIAO G.Smart combination of cyclodextrin polymer host-guest recognition and Mg2+-assistant cyclic cleavage reaction for sensitive electrochemical assay of nucleic acids[J]. ACS Appl. Mater. Interf., 2017, 9(42): 36688-36694. |
| 27 | PIETTA P, MAURI P, PACE M.HPLC assay of enzymatic activities[J]. Chromatographia, 1987, 24(1): 439-441. |
| 28 | XU J, CHEN Y, LI L,et al..An improved HPLC method for the quantitation of 3'-phosphoadenosine 5'-phosphate (PAP) to assay sulfotransferase enzyme activity in HepG2 cells[J]. J. Pharm. Biomed. Anal., 2012, 62: 182-186. |
| 29 | 贾哲康,程歆然,窦文芳.基于糖基转移酶与蔗糖合酶级联催化合成紫云英苷的研究[J].生物技术进展,2023,13(2):247-256. |
| JIA Z K, CHENG X R, DOU W F.Cascade catalysis of glycosyltransferase and sucrose synthase to produce astragalin[J]. Curr. Biotechnol., 2023, 13(2): 247-256. | |
| 30 | 陈清轩.高效液相色谱法测定酶的活性[J].色谱,1992,10(2):101-103. |
| CHEN Q X. Determination of enzyme activity by HPLC[J]. Chin. J. Chrom., 1992,10(2):101-103. | |
| 31 | 崔幼恬.腈水合酶稳定性改造及腈水合酶新型纯化方法的研究[D].无锡:江南大学,2015. |
| CUI Y T. engineering of nitrile hydratase to improve its stability and study on a novel method of its purification[D]. Wuxi: Jiangnan University, 2015. | |
| 32 | 程娇梅,齐祥明,郭晓华.液相色谱法测定发酵液中阿魏酸酯酶的活力[J].食品与饲料工业,2022,(3):54-58. |
| CHENG J M, QI X M, GUO X H. A High performance liquid chromatography method for the determination of feruloyl esterase activity[J]. Cereal Feed Ind., 2022(3): 54-58. | |
| 33 | 赵凤章,赵和平.高效液相色谱柱的原理、性能及选用方法[J].白求恩医科大学学报,1988,14(4): 379-381. |
| ZHAO F Z, ZHAO H P. Principle, performance and selection method of HPLC column[J]. J. Bethune Univ. Med. Sci., 1988, 14(4): 379-381. | |
| 34 | SCHULTZ G.15]General Principles of assays for adenylate cyclase and guanylate cyclase activity[J]. Meth. Enzymol., 1974, 38: 115-125. |
| 35 | 胡元元,何善述.谷氨酸脱羧酶放射测量法的改良与应用[J]. 生物化学与生物物理进展,2001,28(1):118-120. |
| HU Y Y, HE S H. Improvement of glutamic decarboxylase radioassay and its apply[J]. Prog. Biochem. Biophys., 2001,28(1):118-120. | |
| 36 | 张爱宏,刘国庆.放射性同位素标记法检测脂蛋白脂肪酶活性及其应用[J]. 中国动脉硬化,2003,11(6): 573-576. |
| ZHANG A H, LIU G Q. Determination of lipoprotein lipase activity using radioactive substrate emulsion and its application[J]. Chin. J. Arterios., 2003, 11(6): 573-576. | |
| 37 | 胡骏杰, 刘飞, 鞠熿先. 中国化学会第二届全国质谱分析学术报告会会议摘要集[C]//杭州:中国化学会,2015. |
| HU J J, LIU F, JU H X. Summary set of the Second National Mass Spectrometry Analysis Academic Conference of Chinese Chemical Society[C]//Hangzhou: Chinese Chemical Society,2015. | |
| 38 | 余佳佳,俞静,刘瑛.基质辅助激光解析电离飞行时间质谱检测β-内酰胺酶的研究进展[J].上海交通大学学报(医学版),2017,37(4): 566-570. |
| YU J J, YU J, LIU Y. Research progresses of applying MALDI-TOF mass spectrometry in the detection of β-lactamase[J]. J. Shanghai Jiao Tong Univ. (Med. Sci.), 2017, 37(4): 566-570. | |
| 39 | 林夕,玲玲,国新华.MALDI质谱技术在酶活性分析中的应用[J].分析测试学报,2020,39(1):68-74. |
| LIN X, LING L, GUO X H.Application of MALDI mass spectrometry in enzymes activity analysis[J]. J. Instrum. Anal., 2020, 39(1): 68-74. | |
| 40 | YANG H, CHAN A L, LAVALLO V, et al.. Quantitation of alphaglucosidase activity using fluorinated carbohydrate array and MALDI-TOF-MS[J]. ACS Appl. Mater. & Inter., 2016, 8(4): 2872-2878. |
| 41 | 齐天琪.血清转氨酶参考物质互通性和检测方法性能评价研究 液相色谱质谱检测转氨酶活性的可行性研究[D].北京:中国医学科学院北京协和医学院,2018. |
| QI T Q. Commutability of Reference materials and performance of methods for aminotransferase measurement Feasibility of measuring aminotransferase activity by liquid chromatography mass spectrometry[D]. Peking: Chinese Academy of Medical Sciences Peking Union Medical College,2018. | |
| 42 | 魏喜芹,王欣瑜,雷艳丽,等. LC-MS/MS法评价CYP 3A酶活性[J].宁夏医科大学学报,2016,38(10):1121-1125. |
| WEI X Q, WANG X Y, LEI Y L, et al.. Evaluation of CYP3A activity by LC-MS/MS[J]. J. Ningxia Med. Univ., 2016, 38(10): 1121-1125. | |
| 43 | WANG X, DOU Z, YUAN Y, et al.. On-line screening of matrix metalloproteinase inhibitors by capillary electrophoresis coupled to ESI mass spectrometry[J]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2013, 930: 48-53. |
| 44 | MELLER K, SZUMSKI M, BUSZEWSKI B.Microfluidic reactors with immobilized enzymes—characterization,dividing,perspectives[J]. Sens. Actuat. B Chem., 2017, 244: 84-106. |
| 45 | LONGWELL C K, LABANIEH L, COCHRAN J R.High-throughput screening technologies for enzyme engineering[J]. Curr. Opin. Biotechnol., 2017, 48: 196-202. |
| 46 | PEI J, NIE J, KENNEDY R T.Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities[J]. Anal. Chem., 2010, 82(22): 9261-9267. |
| 47 | WU N, COURTOIS F, SURJADI R, et al.. Enzyme synthesis and activity assay in microfluidic droplets on a chip[J]. Eng. Life Sci., 2011, 11(2): 157-164. |
| 48 | DE ROND T, DANIELEWICZ M, NORTHEN T.High throughput screening of enzyme activity with mass spectrometry imaging[J]. Curr. Opin. Biotechnol., 2015, 31: 1-9. |
| 49 | DE BOER A R, BRUYNEEL B, KRABBE J G, et al.. A microfluidic-based enzymatic assay for bioactivity screening combined with capillary liquid chromatography and mass spectrometry[J]. Lab Chip, 2005, 5(11): 1286-1292. |
| 50 | 徐贞林汪曣.质谱仪器[M].北京:机械工业出版社,1995. |
| 51 | WANG K, JIANG L, ZHANG F, et al.. Strategy for in situ imaging of cellular alkaline phosphatase activity using gold nanoflower probe and localized surface plasmon resonance technique[J]. Anal. Chem., 2018, 90(23): 14056-14062. |
| 52 | DRESCHER D G, SELVAKUMAR D, DRESCHER M J. Chapter one-analysis of protein interactions by surface plasmon resonance[J]. Adv. Protein Chem. Struct. Biol., 2018, 110: 1-30. |
| 53 | JEBELLI A, OROOJALIAN F, FATHI F, et al.. Recent advances in surface plasmon resonance biosensors for microRNAs detection[J/OL]. Biosens. Bioelectron., 2020, 169: 112599[2024-11-10]. . |
| 54 | 罗世闻,武利庆,杨彬,等.表面等离子体共振技术及其在蛋白质活性浓度绝对定量中的应用[J].计量学报,2023,44(11):1770-1775. |
| LUO S W, WU L Q, YANG B, et al.. Surface plasmon resonance and its application in absolute quantification of active protein concentration[J]. Acta Metrol. Sin., 2023, 44(11): 1770-1775. | |
| 55 | PHILIP A, KUMAR A R. The performance enhancement of surface plasmon resonance optical sensors using nanomaterials: a review[J/OL]. Coord. Chem. Rev., 2022, 458: 214424[2024-11-10]. . |
| 56 | WANG K, SHANGGUAN L, LIU Y, et al.. In situ detection and imaging of telomerase activity in cancer cell lines via disassembly of plasmonic core-satellites nanostructured probe[J]. Anal. Chem., 2017, 89(13): 7262-7268. |
| 57 | 史佩玉,曹立民,林洪,等.表面等离子体共振技术分析卵黄抗体对酪氨酸酶与底物相互作用的影响[J].食品科学,2018,39(2):158-162. |
| SHI P Y, CAO L M, LIN H, et al.. Impact of specific IgY on the interaction between tyrosinase and its substrate analyzed by surface plasmon resonance[J]. Food Sci.,2018,39(2):158-162. | |
| 58 | FÄGERSTAM L G, FROSTELL-KARLSSON A, KARLSSON R,et al.. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic,binding site and concentration analysis[J]. J. Chromatogr., 1992, 597(1/2):397-410. |
| 59 | KAMAL EDDIN F B, FEN Y W. The principle of nanomaterials based surface plasmon resonance biosensors and its potential for dopamine detection[J/OL]. Molecular, 2020, 25(12):E2769[2024-11-10]. . |
| 60 | BARACU A M, DINU GUGOASA L J. Review-recent advances in microfabrication, design and applications of amperometric sensors and biosensors [J]. J. Electrochem. Soc., 2021, 168(3):37503-37519. |
| 61 | 柯以侃,董慧如.分析化学手册[M]. (第三版). 北京:化学工业出版社,2015. |
| KE Y K, DONG H R. The Chemical Analysis Manual[M]. (Third Edition). Beijing: Chemical Industry Press, 2015. | |
| 62 | 欧阳磊,朱丽华,帅琴.表面增强拉曼光谱的样品前处理方法研究进展[J].武汉工程大学学报,2023,45(5):473-481. |
| OUYANG L, ZHU L H, SHUAI Q.Progress in pretreatment methods suitable for surface-enhanced Raman spectroscopy[J]. J. Wuhan Inst. Technol., 2023, 45(5):473-481. | |
| 63 | FLEISCHMANN M, HENDRA P J, MCQUILLAN A J.Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem.Phys. Lett., 1974, 26(2):163-166. |
| 64 | LEE P C, MEISEL D. J. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. J. Phys. Chem., 1982, 86(17): 3391-3395. |
| 65 | MOSKOVITS M. Surface-enhanced Raman spectroscopy:a brief perspective[J]. J. Raman Spectrosc., 2005, 36(6-7): 485-496. |
| 66 | OTTO A.The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering[J]. J. Raman Spectrosc., 2005, 36(6/7):497-509. |
| 67 | LIU X J, LI W, HOU T, et al.. Homogeneous electrochemical strategy for human telomerase activity assay at aingle-cell level based on T7 exonuclease-aided target recycling amplification[J]. Anal. Chem., 2015, 87(7):4030-4036. |
| 68 | FENG E, ZHENG T, TIAN Y. Dual-mode Au nanoprobe based on surface enhancement Raman scattering and colorimetry for sensitive determination of telomerase activity both in cell extracts and in the urine of patients[J].ACS Sens.,2019,4(1):211-217. |
| 69 | XU L G, ZHAO S, MA W, et al.. Multigaps embedded nanoassemblies enhance in situ raman spectroscopy for intracellular telomerase activity sensing[J]. Adv. Funct. Mater., 2016,26(10):1602-1608. |
| 70 | EOM G, KIM H, HWANG A, et al.. Nanogap‐rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis[J]. Funct. Mater., 2017, 27(37): 1701832[2024-8-30]. . |
| 71 | 杨丽园. 表面增强拉曼光谱技术在酶检测方面的应用[D]. 长春:吉林大学,2017. |
| YANG L Y. Surface enhanced Raman Spectroscopy technology in the application of protease detection[D]. Changchun: Jilin University,2017. | |
| 72 | HUANG Y F, LIAO S Q, XIONG M,et al..A silver nanorod based SERS assay for the homogeneous detection of uracil-DNA glycosylase activity[J]. Anal. Methods, 2017, 9(5):786-791. |
| 73 | MOHAGHEGH F, TEHRANI A M, MATERNY A J. Investigation of the importance of the electronic enhancement mechanism for surface-enhanced Raman scattering (SERS)[J]. Phys. Chem. C, 2021, 125(9):5158-5166. |
| [1] | Ju CHEN, Chunjie DING, Yinling SUN, Han ZHAO, Hongyu ZHENG, Xin GAO, Shuhan JIN, Kun DONG. Antioxidant Activity and Composition Changes of Lycium chinense Miller Leaf Black Tea Fermented by Aspergillus cristatum [J]. Current Biotechnology, 2025, 15(3): 510-517. |
| [2] | Xiaomin PANG, Yanyi LI. Research and Application of Protein Purification Technology Based on Different Ligands [J]. Current Biotechnology, 2025, 15(1): 50-57. |
| [3] | Haoran DONG, Ning JIANG, Huan LU, Yang FU, Qiaozhen LI, Hailong YU. Research Progress on Structure and Function of Lentinan [J]. Current Biotechnology, 2024, 14(6): 911-919. |
| [4] | Shaoting PAN, Boxuan WANG, Jiaxin CHEN, Jiajun CAI, Yanshen LIN, Lingzhi TANG, Xuan HONG. Research Progress on Polyketides from Marine Fungi [J]. Current Biotechnology, 2024, 14(6): 993-1003. |
| [5] | Jie JI, Yaru KONG, Shan WANG, Jun TAI. Study on Plasma Metabolic Changes in Children with OSA Based on Gas Chromatography-mass Spectrometry Detection [J]. Current Biotechnology, 2024, 14(4): 657-667. |
| [6] | Qiaoli CHEN, Jie HUANG, Senyu CHEN, Shaoting PAN, Lingzhi TANG, Xuan HONG. Research Progress on Secondary Metabolites of Marine Streptomyces [J]. Current Biotechnology, 2023, 13(6): 844-852. |
| [7] | Kainan SONG, Linan XIE, Yuquan XU. Progress of Fungal Secondary Metabolites with Potential Herbicidal Activity [J]. Current Biotechnology, 2023, 13(2): 181-194. |
| [8] | Kaituo ZHAO, Zhilong LI, Da HE. Effect of Salinity Rising of Inland Water on Physiological Characteristics of Chlorella vulgaris [J]. Current Biotechnology, 2022, 12(6): 894-899. |
| [9] | Xinliang MAO, Hui ZHANG, Wenjie CHEN, Yanwu CHEN, Honghong REN, Guiyuan YU, Yadong HUANG, Qi XIANG, Xiaomin LI. Study on Strain Optimization of Coix Seed Multi Lactobacillus Fermentation Broth and its Inhibition on Melanin Production [J]. Current Biotechnology, 2022, 12(6): 929-936. |
| [10] | Ruixue SUN, Wei MI, Zihong YE. Research Advances in Protein Interactions Based on Mass Spectrometry [J]. Current Biotechnology, 2022, 12(2): 161-167. |
| [11] | Pengzheng PEI, Jianmin YUN, Qi JIA, Yuxuan ZHAO, Lin HAO. Analysis on Changes of Volatile Flavor Compounds in Ruan′er Pear Wine During Fermentation [J]. Current Biotechnology, 2021, 11(6): 758-769. |
| [12] | WANG Xianxia1,2, WU Liqing2*, YANG Bin2, ZHANG Ning2, SU Ping1*, YANG Yi1. Review on Research Progress of Protein Activity Metrology Technology [J]. Curr. Biotech., 2020, 10(6): 607-612. |
| [13] | REN Wen1, YANG Haixia2, CHEN Lizhu2, LI Yufeng2, LIU Ya1*. Establishment and Application of Nucleic Acid Chromatography for Rapid Detection of Transgenic Plants [J]. Curr. Biotech., 2020, 10(6): 680-687. |
| [14] | ZHAO Jie1, ZHANG Weijie2, CHEN Yao3, XIANG Qingfang1, ZHAO Ting1, MAO Guanghua3, FENG Weiwei3, YANG Liuqing1*. Effect of Bee Pupa Polypeptide on the Immune Activity of Macrophage RAW264.7 [J]. Curr. Biotech., 2020, 10(5): 550-556. |
| [15] | LI Lijuan1, XIA Wenjing2, MA Guiping1 . Study on Optimum Process Conditions Immobilized Cellulase with Carbon Nanotubes [J]. Curr. Biotech., 2020, 10(4): 426-431. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||