Current Biotechnology ›› 2024, Vol. 14 ›› Issue (6): 892-901.DOI: 10.19586/j.2095-2341.2024.0120
• Special Forum on Edible and Medicinal Fungi Biotechnology • Previous Articles Next Articles
Dinghong JIA1(
), Xun LIU1, Bo WANG1(
), Xiaowei WANG2,3, Tong LI2, Lijing HUANG4
Received:2024-07-02
Accepted:2024-08-14
Online:2024-11-25
Published:2024-12-27
Contact:
Dinghong JIA,Bo WANG
贾定洪1(
), 刘询1, 王波1(
), 王晓巍2,3, 李通2, 黄礼璟4
通讯作者:
贾定洪,王波
作者简介:贾定洪E-mail: jdhdragon@163.com基金资助:CLC Number:
Dinghong JIA, Xun LIU, Bo WANG, Xiaowei WANG, Tong LI, Lijing HUANG. Development and Application of Abundance SNP Markers for Auricularia heimuer[J]. Current Biotechnology, 2024, 14(6): 892-901.
贾定洪, 刘询, 王波, 王晓巍, 李通, 黄礼璟. 黑木耳丰度SNP标记开发及应用[J]. 生物技术进展, 2024, 14(6): 892-901.
| 组装版本号 | 物种名称 | 菌株 | 基因组大小/Mb | 组装水平 |
|---|---|---|---|---|
| GCA_002092955.1 | 黑木耳(A. auricula-judae) | B14-8 | 43.57 | Scaffold |
| GCA_030578095.1 | 毛木耳(A. cornea) | ACW001 | 78.72 | Scaffold |
| GCA_002287115.1 | 黑木耳(A. heimuer) | Dai 13782 | 49.76 | Scaffold |
| GCA_008368385.1 | 毛木耳(A. cornea) | CCMJ2827 | 78.50 | Contig |
| GCA_000265015.1 | 皱木耳(A. subglabra) | TFB-10046 SS5 | 74.92 | Scaffold |
Table 1 Genome information of Auricularia heimuer and its closely related species
| 组装版本号 | 物种名称 | 菌株 | 基因组大小/Mb | 组装水平 |
|---|---|---|---|---|
| GCA_002092955.1 | 黑木耳(A. auricula-judae) | B14-8 | 43.57 | Scaffold |
| GCA_030578095.1 | 毛木耳(A. cornea) | ACW001 | 78.72 | Scaffold |
| GCA_002287115.1 | 黑木耳(A. heimuer) | Dai 13782 | 49.76 | Scaffold |
| GCA_008368385.1 | 毛木耳(A. cornea) | CCMJ2827 | 78.50 | Contig |
| GCA_000265015.1 | 皱木耳(A. subglabra) | TFB-10046 SS5 | 74.92 | Scaffold |
| 引物名称 | 上游序列(5′→3′) | 下游序列(5′→3′) |
|---|---|---|
| ITS4/5 | 5′-TCCTCCGCTTATTGATATGC-3′ | 5′-GGAAGTAAAAGTCGTAACAAGG-3′ |
| Rpb2 | 5′-TGGGGKWTGGTYTGYCCTGC-3′ | 5′-CCCATRGCTTGYTTRCCCAT-3′ |
| IGS | 5′-TATGTCCCGCATGTGTTAGT-3′ | 5′-GCGTCTATAAGGCGTAACTA-3′ |
| LSU | 5′-ACCCGCTGAACTTAAGC-3′ | 5′-TACTACCACCAAGATCT-3′ |
Table 2 Marker primers used in the study
| 引物名称 | 上游序列(5′→3′) | 下游序列(5′→3′) |
|---|---|---|
| ITS4/5 | 5′-TCCTCCGCTTATTGATATGC-3′ | 5′-GGAAGTAAAAGTCGTAACAAGG-3′ |
| Rpb2 | 5′-TGGGGKWTGGTYTGYCCTGC-3′ | 5′-CCCATRGCTTGYTTRCCCAT-3′ |
| IGS | 5′-TATGTCCCGCATGTGTTAGT-3′ | 5′-GCGTCTATAAGGCGTAACTA-3′ |
| LSU | 5′-ACCCGCTGAACTTAAGC-3′ | 5′-TACTACCACCAAGATCT-3′ |
| 皱木耳 SS5 | 黑木耳B14-8 | 黑木耳Dai13782 | 毛木耳CCMJ2827 | 毛木耳ACW001 | |
|---|---|---|---|---|---|
| 皱木耳SS5 | 0.017 141 | -0.001 727 | 0.000 000 | -0.009 575 | -0.005 840 |
| 黑木耳B14-8 | -0.001 727 | 0.003 728 | 0.000 000 | -0.001 102 | -0.000 900 |
| 黑木耳Dai13782 | 0.000 000 | 0.000 000 | 0.000 000 | 0.000 000 | 0.000 000 |
| 毛木耳CCMJ2827 | -0.009 575 | -0.001 102 | 0.000 000 | 0.013 200 | -0.002 523 |
| 毛木耳ACW001 | -0.005 840 | -0.000 900 | 0.000 000 | -0.002 523 | 0.009 262 |
Table 3 Kinship matrix of A. heimuer and its related species based on genomic SNPs
| 皱木耳 SS5 | 黑木耳B14-8 | 黑木耳Dai13782 | 毛木耳CCMJ2827 | 毛木耳ACW001 | |
|---|---|---|---|---|---|
| 皱木耳SS5 | 0.017 141 | -0.001 727 | 0.000 000 | -0.009 575 | -0.005 840 |
| 黑木耳B14-8 | -0.001 727 | 0.003 728 | 0.000 000 | -0.001 102 | -0.000 900 |
| 黑木耳Dai13782 | 0.000 000 | 0.000 000 | 0.000 000 | 0.000 000 | 0.000 000 |
| 毛木耳CCMJ2827 | -0.009 575 | -0.001 102 | 0.000 000 | 0.013 200 | -0.002 523 |
| 毛木耳ACW001 | -0.005 840 | -0.000 900 | 0.000 000 | -0.002 523 | 0.009 262 |
| 引物名称 | 引物序列(5'→3') | aSNP锚定区SNP数量 | ePCR-SNP数量 | 参考基因组ePCR产物长度/bp | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 序列重叠群 | 起始位点 | 区域编号 | SNP数量 | 皱木耳SS5 | 黑木耳B14-8 | 毛木耳CCMJ | 毛木耳ACW001 | |||
| NEKD01000001.1:2330400-2331300_2 | 5'-TGCCGCCATCTGTAGTAAGGATC-3'/5'-CTGAACTGCGACCAGATGTTG-3' | NEKD01000001.1 | 2 330 700 | 1 | 54 | 101 | 0 | 95 | 95 | 636 |
| NEKD01000001.1:2384700-2385600_1 | 5'-GGTTGTTCTCCTCCTCCTCCATC-3'/5'-TTGTAGACGTACTCGGTCGAACC-3' | NEKD01000001.1 | 2 385 000 | 2 | 56 | 119 | 0 | 118 | 116 | 642 |
| NEKD01000007.1:430800-431700_9 | 5'-TCCAGGACAAGAAGTGGTTCGAC-3'/5'-AATGCGACTGAAATCGTGAGCTG-3' | NEKD01000007.1 | 431 100 | 3 | 53 | 136 | 1 | 134 | 134 | 811 |
| NEKD01000038.1:287100-288000_4 | 5'-TTCAGAGCGTACTTGGTCAGGAC-3'/5'-CATCACCACTCCTGACGGATCAC-3' | NEKD01000038.1 | 287 400 | 4 | 50 | 84 | 11 | 77 | 74 | 646 |
| NEKD01000007.1:764400-765300_18 | 5'-ATTTGCCATTCTTGGGGTTCTCG-3'/5'-TTCCCCTCCTCGACTGTTTTTCC-3' | NEKD01000007.1 | 764 700 | 5 | 51 | 105 | 4 | 87 | 87 | 594 |
| NEKD01000006.1:1829100-1830000_3 | 5'-CCAATGCAATGTCCGTCCTCAAG-3'/5'-GAATATCTGCGCCAGAAGCTCTG-3' | NEKD01000006.1 | 1 829 400 | 6 | 52 | 97 | 0 | 90 | 93 | 542 |
| NEKD01000003.1:1054500-1055400_6 | 5'-GTGCTCACGATCTTTGTCAACCC-3'/5'-CGTAGTCCAGCTTCATATGCACG-3' | NEKD01000003.1 | 1 054 800 | 7 | 55 | 87 | 12 | 74 | 74 | 638 |
| NEKD01000005.1:157500-158400_18 | 5'-GAGCGGCCGTACTTCTTGTAGTG-3'/5'-ACGTCATCCCGTACTTCAAGGG-3' | NEKD01000005.1 | 157 800 | 8 | 55 | 80 | 25 | 78 | 78 | 454 |
Table 4 Information of aSNP region, primer, SNP number and ePCR product size
| 引物名称 | 引物序列(5'→3') | aSNP锚定区SNP数量 | ePCR-SNP数量 | 参考基因组ePCR产物长度/bp | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 序列重叠群 | 起始位点 | 区域编号 | SNP数量 | 皱木耳SS5 | 黑木耳B14-8 | 毛木耳CCMJ | 毛木耳ACW001 | |||
| NEKD01000001.1:2330400-2331300_2 | 5'-TGCCGCCATCTGTAGTAAGGATC-3'/5'-CTGAACTGCGACCAGATGTTG-3' | NEKD01000001.1 | 2 330 700 | 1 | 54 | 101 | 0 | 95 | 95 | 636 |
| NEKD01000001.1:2384700-2385600_1 | 5'-GGTTGTTCTCCTCCTCCTCCATC-3'/5'-TTGTAGACGTACTCGGTCGAACC-3' | NEKD01000001.1 | 2 385 000 | 2 | 56 | 119 | 0 | 118 | 116 | 642 |
| NEKD01000007.1:430800-431700_9 | 5'-TCCAGGACAAGAAGTGGTTCGAC-3'/5'-AATGCGACTGAAATCGTGAGCTG-3' | NEKD01000007.1 | 431 100 | 3 | 53 | 136 | 1 | 134 | 134 | 811 |
| NEKD01000038.1:287100-288000_4 | 5'-TTCAGAGCGTACTTGGTCAGGAC-3'/5'-CATCACCACTCCTGACGGATCAC-3' | NEKD01000038.1 | 287 400 | 4 | 50 | 84 | 11 | 77 | 74 | 646 |
| NEKD01000007.1:764400-765300_18 | 5'-ATTTGCCATTCTTGGGGTTCTCG-3'/5'-TTCCCCTCCTCGACTGTTTTTCC-3' | NEKD01000007.1 | 764 700 | 5 | 51 | 105 | 4 | 87 | 87 | 594 |
| NEKD01000006.1:1829100-1830000_3 | 5'-CCAATGCAATGTCCGTCCTCAAG-3'/5'-GAATATCTGCGCCAGAAGCTCTG-3' | NEKD01000006.1 | 1 829 400 | 6 | 52 | 97 | 0 | 90 | 93 | 542 |
| NEKD01000003.1:1054500-1055400_6 | 5'-GTGCTCACGATCTTTGTCAACCC-3'/5'-CGTAGTCCAGCTTCATATGCACG-3' | NEKD01000003.1 | 1 054 800 | 7 | 55 | 87 | 12 | 74 | 74 | 638 |
| NEKD01000005.1:157500-158400_18 | 5'-GAGCGGCCGTACTTCTTGTAGTG-3'/5'-ACGTCATCCCGTACTTCAAGGG-3' | NEKD01000005.1 | 157 800 | 8 | 55 | 80 | 25 | 78 | 78 | 454 |
| 序列长度(bp)及SNP数量(个) | 菌株来源 | |||||||
|---|---|---|---|---|---|---|---|---|
| aSNP编号及传统标记序列 | 1 | 3 | 4 | 6 | 7 | ITS | LSU | |
| ePCR及测序比对序列 | 581 | 740 | 565 | 493 | 566 | 611 | 1 366 | / |
| 皱木耳SS5 | 104 | 131 | 83 | 97 | 84 | / | / | NCBI |
| 黑木耳B14-8 | 0 | 0 | 11 | 0 | 12 | 4 | 0 | NCBI |
| 毛木耳CCMJ2827 | 98 | 130 | 75 | 90 | 70 | 50 | 19 | NCBI |
| 毛木耳ACW001 | 98 | 130 | 72 | 93 | 70 | 50 | 19 | NCBI |
| HmF | 4 | 1 | 4 | 3 | 12 | 4 | 1 | 四川省食用菌研究所 |
| Hm159 | 4 | 2 | 10 | 2 | 10 | 5 | 1 | 四川省食用菌研究所 |
| HmDS | 4 | 0 | 1 | 4 | 12 | 4 | 1 | 四川省食用菌研究所 |
| Hm231 | 4 | 0 | 1 | 3 | 12 | 4 | 4 | 四川省食用菌研究所 |
| Hm168 | 4 | 1 | 1 | 3 | 12 | 4 | 2 | 四川省食用菌研究所 |
| Hm10 | 4 | 3 | 1 | 3 | 12 | 4 | 4 | 四川省食用菌研究所 |
| Hm29 | 4 | 2 | 12 | 2 | 10 | 5 | 0 | 四川省食用菌研究所 |
| HmC | 2 | 2 | 5 | 3 | 12 | 4 | 2 | 四川省食用菌研究所 |
| HmDSH | 4 | 1 | 5 | 3 | 12 | 4 | 2 | 四川省食用菌研究所 |
| Hm2 | 4 | 0 | 0 | 3 | 12 | 4 | 3 | 四川省食用菌研究所 |
| HmXB | 4 | 0 | 10 | 2 | 10 | 5 | 0 | 四川省食用菌研究所 |
| Hm216 | 4 | 4 | 65 | 9 | 11 | 2 | 2 | 四川省食用菌研究所 |
| Hm233 | 4 | 1 | 6 | 3 | 12 | 4 | 3 | 四川省食用菌研究所 |
Table 5 Statistics of aSNPs, ITS, and LSU marker variation sites in the electronic PCR sequences of NCBI strains and the sequencing data of verified strains
| 序列长度(bp)及SNP数量(个) | 菌株来源 | |||||||
|---|---|---|---|---|---|---|---|---|
| aSNP编号及传统标记序列 | 1 | 3 | 4 | 6 | 7 | ITS | LSU | |
| ePCR及测序比对序列 | 581 | 740 | 565 | 493 | 566 | 611 | 1 366 | / |
| 皱木耳SS5 | 104 | 131 | 83 | 97 | 84 | / | / | NCBI |
| 黑木耳B14-8 | 0 | 0 | 11 | 0 | 12 | 4 | 0 | NCBI |
| 毛木耳CCMJ2827 | 98 | 130 | 75 | 90 | 70 | 50 | 19 | NCBI |
| 毛木耳ACW001 | 98 | 130 | 72 | 93 | 70 | 50 | 19 | NCBI |
| HmF | 4 | 1 | 4 | 3 | 12 | 4 | 1 | 四川省食用菌研究所 |
| Hm159 | 4 | 2 | 10 | 2 | 10 | 5 | 1 | 四川省食用菌研究所 |
| HmDS | 4 | 0 | 1 | 4 | 12 | 4 | 1 | 四川省食用菌研究所 |
| Hm231 | 4 | 0 | 1 | 3 | 12 | 4 | 4 | 四川省食用菌研究所 |
| Hm168 | 4 | 1 | 1 | 3 | 12 | 4 | 2 | 四川省食用菌研究所 |
| Hm10 | 4 | 3 | 1 | 3 | 12 | 4 | 4 | 四川省食用菌研究所 |
| Hm29 | 4 | 2 | 12 | 2 | 10 | 5 | 0 | 四川省食用菌研究所 |
| HmC | 2 | 2 | 5 | 3 | 12 | 4 | 2 | 四川省食用菌研究所 |
| HmDSH | 4 | 1 | 5 | 3 | 12 | 4 | 2 | 四川省食用菌研究所 |
| Hm2 | 4 | 0 | 0 | 3 | 12 | 4 | 3 | 四川省食用菌研究所 |
| HmXB | 4 | 0 | 10 | 2 | 10 | 5 | 0 | 四川省食用菌研究所 |
| Hm216 | 4 | 4 | 65 | 9 | 11 | 2 | 2 | 四川省食用菌研究所 |
| Hm233 | 4 | 1 | 6 | 3 | 12 | 4 | 3 | 四川省食用菌研究所 |
| 1 | SUN X, YANG C, MA Y, et al.. Research progress of Auricularia heimuer on cultivation physiology and molecular biology[J/OL]. Front. Microbiol., 2022, 13: 1048249[2024-07-25]. . |
| 2 | 崔玉玲. 黑木耳种质资源遗传特性及优良菌株筛选研究[D]. 长春:吉林农业大学, 2023. |
| 3 | 尹显达. 黑木耳菌糠相关成分检测及其资源化开发技术创新[D]. 保定: 河北大学, 2023. |
| 4 | 员瑗. 中国野生黑木耳遗传多样性及全基因组信息分析[D]. 北京: 北京林业大学, 2018. |
| 5 | 曹建刚, 毛仪楠, 陈再民, 等. 不同木屑栽培黑木耳配方对比试验[J]. 食用菌, 2024, 46(2): 37-39. |
| CAO J G, MAO Y N, CHEN Z M, et al.. Comparative experiment on formula of Auricularia auricula cultivated with different sawdust[J]. Edible Fungi, 2024, 46(2): 37-39. | |
| 6 | 李富春, 陈晓文, 张蓉, 等. 光伏钢架塑料大棚袋料栽培黑木耳品种筛选[J]. 寒旱农业科学, 2023, 2(11): 1026-1030. |
| LI F C, CHEN X W, ZHANG R, et al. Screening Auricularia auricula varieties used for bagged cultivation in steel-framed photovoltaic greenhouses[J]. J. Cold-Arid. Agric. Sci., 2023, 2(11): 1026-1030. | |
| 7 | 杨迪. 玉米芯栽培黑木耳的配方筛选及胞外酶活性研究[D]. 长春:吉林农业大学, 2023. |
| 8 | 姜冬洋, 苏林贺, 陈亚东, 等. 富硒黑木耳菌丝体硒多糖的提取与抗氧化活性[J]. 菌物学报, 2024, 43(2): 115-128. |
| JIANG D Y, SU L H, CHEN Y D, et al. Extraction and antioxidant activities of selenium polysaccharide from selenium-enriched Auricularia heimuer mycelia[J]. Mycosystema, 2024, 43(2): 115-128. | |
| 9 | 李博文, 毛雪, 姜威, 等. 黑木耳降血糖的研究进展及趋势分析[J]. 中国农学通报, 2024, 40(2):143-151. |
| LI B W, MAO X, JIANG W, et al. Research progress and trend analysis of hypoglycemia of Auricularia auricula [J]. Chin. Agri. Sci. Bull., 2024, 40(2): 143-151. | |
| 10 | 马银鹏.黑木耳黑色素液体发酵制备及其抗氧化作用[D].哈尔滨:东北林业大学,2023. |
| 11 | ZONG X, ZHANG H, ZHU L, et al.. Auricularia auricula polysaccharides attenuate obesity in mice through gut commensal Papillibacter cinnamivorans [J]. J. Adv. Res., 2023, 52: 203-218. |
| 12 | 李伶俐, 路新彦, 蒋俊, 等. 黑木耳‘林黑1号’[J]. 园艺学报, 2023, 50(S2):103-104. |
| LI L L, LU X Y, JIANG J, et al.. Auricularia auricula ‘Linhei 1’[J]. Acta Hortic. Sinica, 2023, 50(S2): 103-104. | |
| 13 | 于海洋, 盛春鸽, 史磊, 等. 5个野生黑木耳菌株的驯化栽培及评价研究[J]. 北方园艺, 2024,14:123-128. |
| YU H Y, SHENG C G, SHI L, et al. Domestication cultivation and evaluation of five wild Auricularia heimuer strains[J]. North. Hortic., 2024, 14: 123-128. | |
| 14 | 马庆芳,张丕奇,戴肖东,等.黑木耳Au185菌株一个SCAR标记的建立[J].菌物研究,2009,7(2):104-108+115. |
| MA Q F, ZHANG P Q, DAI X D, et al.. A scar marker for Auricularia auricula strain Au185[J]. J. Fungal Res., 2009, 7(2): 104-108+115. | |
| 15 | 赵丽, 陈艳秋. 黑木耳栽培菌株亲缘关系的RAPD分析[J]. 食用菌, 2009, 31(4):14-15. |
| ZHAO L, CHEN Y Q. RAPD analysis of genetic relationship of cultivated strains of Auricularia auricula [J]. Edible Fungi, 2009, 31(4): 14-15. | |
| 16 | 李红,张敏,屈麟,等.基于ISSR-PCR分子标记的黑木耳遗传多样性分析[J].园艺与种苗,2019,39(6):1-3+23. |
| LI H, ZHANG M, QU L, et al.. Analyse on genetic diversity of Auricularia auricular strains with ISSR-PCR molecular marker[J]. Hortic. Seed, 2019, 39(6): 1-3+23. | |
| 17 | 史灵燕,刘保卫,顾新颖,等.生化和ISSR分子标记在黑木耳品种鉴定中的应用[J].北方园艺,2019,9:136-141. |
| SHI L Y, LIU B W, GU X Y, et al.. Application of biochemical and ISSR molecular markers in identification of Auricularia auricular[J]. North. Hortic., 2019, 9: 136-141. | |
| 18 | 王立枫, 许修宏, 刘华晶. 黑龙江地区野生黑木耳菌种的ISSR指纹分析[J]. 东北农业大学学报, 2011, 42(2): 109-114. |
| WANG L F, XU X H, LIU H J. ISSR fingerprint analysis of wild strains of Auricularia auricula in Heilongjiang Province[J]. J. North. Agric. Uni., 2011, 42(2):109-114. | |
| 19 | 史灵燕,张云龙,刘保卫,等.基于SRAP分子标记的24个黑木耳栽培菌株遗传分析[J].食用菌,2019,41(6):20-23+33. |
| SHI L Y, ZHANG Y L, LIU B W, et al.. Genetic analysis of 24 strains of Auricularia auricula based on SRAP molecular markers[J]. Edible Fungi, 2019, 41(6): 20-23+33. | |
| 20 | 陶朋飞,许修宏,刘华晶.黑龙江省野生黑木耳菌株遗传多样性分析[J].中国农学通报,2011,27(22):182-186. |
| TAO P F, XU X H, LIU H J. Genetic diversity analysis of wild Auricularia auriculfrom Heilongjiang Province[J]. Chin. Agric. Sci. Bull., 2011, 27(22): 182-186. | |
| 21 | 路新彦,刘昆,蒋俊,等.7个黑木耳菌株遗传差异性分析[J].中国食用菌,2017,36(1):52-55. |
| LU X Y, LIU K, JIANG J, et al.. Study on genetic polymorphism of 7 Auricularia auricula strains[J]. Edible Fungi China, 2017, 36(1): 52-55. | |
| 22 | 施树, 蒋厚阳, 罗章. 西藏不同地区黑木耳多样性分析[J]. 中国林副特产, 2017(3):11-14. |
| SHI S, JIANG H Y, LUO Z. Analysis of genetic diversity and relationship of black fungus from different regions of Tibet[J]. Forest Product Special. China, 2017(3): 11-14. | |
| 23 | 李晶晶, 姚方杰, 鲁丽鑫. 黑木耳自交菌株菌丝体的遗传多样性分析[J]. 吉林农业大学学报, 2024,46(4):566-572 |
| LI J J, YAO F J, LU L X. Genetic diversity analysis of the mycelium of selfed strains of Auricularia heimuer [J]. J. Jilin Agric. Univ., 2024, 46(4): 566-572. | |
| 24 | 徐安然,付永平,王延锋,等.黑木耳部分种质资源SSR分子身份证的构建[J].农业生物技术学报,2017,25(12):1930-1939. |
| XU A R, FU Y P, WANG Y F, et al.. Establishment of a SSR molecular ID system for some Auricularia heimuer germplasm resources[J]. J. Agric. Biotechnol., 2017, 25(12): 1930-1939. | |
| 25 | 申淑慧,戴习林.基于生长和抗逆功能基因SNP分子标记的凡纳滨对虾野生及选育群体遗传多样性分析[J].南方农业学报,2020,51(11):2836-2845. |
| SHEN S H, DAI X L. Genetic diversity analysis in wild and selected populations of Penaeus vannamei based on SNP markers in growth and stress resistance genes[J]. J. South. Agric., 2020, 51(11): 2836-2845. | |
| 26 | 闫国跃. 基于转录组SSR、SNP标记的苦玄参遗传多样性及有效成分关联位点分析[D]. 北京:中央民族大学, 2020. |
| 27 | 贾定洪, 王波, 何晓兰, 等. 基于基因组重测序发掘金针菇InDel、SV及丰度SNP标记[J]. 菌物学报, 2024,43(7):42-53. |
| JIA D H, WANG B, HE X L, et al.. Exploitation of InDel, SV and abundance SNP markers in Flammulina filiformis based on genome resequencing[J]. Mycosystema, 2024, 43(7): 42-53. | |
| 28 | 钱修伟. 基于宏基因组的鼠疫耶尔森菌快速溯源技术研究[D]. 合肥:安徽医科大学, 2023. |
| 29 | ZHANG L C, LI N, LIU X, et al.. A genome-wide association study of limb bone length using a Large White × Minzhu intercross population[J/OL]. Genet. Sel. Evol., 2014, 46: 56[2024-07-25]. . |
| 30 | ZHENG X, MA Y, BAI Y, et al.. Identification and validation of immunotherapy for four novel clusters of colorectal cancer based on the tumor microenvironment[J/OL]. Front. Immunol., 2022, 13: 984480[2024-07-25]. . |
| 31 | 任静, 何晓莹, 原小燕, 等. 芸薹属SSR标记e-PCR与云南省芥菜型油菜种质遗传多样性分析[J]. 分子植物育种, 2023, 21(16): 5348-5364. |
| REN J, HE X Y, YUAN X Y, et al.. Genetic diversity analysis of Brassica by SSR marker e-PCR and Brassica juncea germplasm in Yunnan Province[J]. Mol. Plant Breed., 2023, 21(16): 5348-5364. | |
| 32 | 杨晟, 尹誉蓉, 王长彪, 等. 基于e-PCR的小麦、山羊草属SSR电子指纹图谱的开发[J]. 麦类作物学报, 2023, 43(5):551-561. |
| YANG S, YIN Y R, WANG Z B, et al.. Development of the wheat SSR electronic fingerprint based on e-PCR[J]. J. Triticeae Crops, 2023, 43(5): 551-561. |
| [1] | Jingjing YANG, Kewei NING, Mingjuan WANG, Binghui TANG, Junling CAI, Aiping LIU, Xiaodong XIE. The Evaluation Method for Drought Resistance During the Germination Period of Upland Cotton and Screening of High-quality Germplasm Resources in the Shihezi Reclamation Area [J]. Current Biotechnology, 2025, 15(3): 486-494. |
| [2] | Wenling ZHAI, Caiyun LIU, Ying LIU, Bisheng FU, Jin CAI, Wei GUO, Qiaofeng ZHANG, Jizhong WU. Phenotypic and Molecular Identification of New Wheat Germplasm Resistant to Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 581-589. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||