Current Biotechnology ›› 2024, Vol. 14 ›› Issue (3): 388-398.DOI: 10.19586/j.2095-2341.2024.0034
• Reviews • Previous Articles Next Articles
					
													Hongbo LI( ), Zhuyue CHEN, Xinxing LYU(
), Zhuyue CHEN, Xinxing LYU( )
)
												  
						
						
						
					
				
Received:2024-02-29
															
							
															
							
																	Accepted:2024-03-25
															
							
																	Online:2024-05-25
															
							
																	Published:2024-06-18
															
						Contact:
								Xinxing LYU   
													通讯作者:
					吕新星
							作者简介:李鸿博 E-mail: li463195983@qq.com;
				
							基金资助:CLC Number:
Hongbo LI, Zhuyue CHEN, Xinxing LYU. Recent Progress on Spermidine Alleviating Cell Senescence and Aging-related Diseases[J]. Current Biotechnology, 2024, 14(3): 388-398.
李鸿博, 陈朱玥, 吕新星. 亚精胺缓解细胞衰老及衰老相关疾病的研究进展[J]. 生物技术进展, 2024, 14(3): 388-398.
| 时间 | 菌株/平台 | 方法 | 底物 | 产量 | 参考文献 | 
|---|---|---|---|---|---|
| 2017年 | Saccharomyces cerevisiae | 代谢工程 | 葡萄糖/木糖 | 224.0 mg·L-1 | [ | 
| 2020年 | Bacillus amyloliquefaciens | 代谢工程 | 果糖/木糖 | 227.4 mg·L-1 | [ | 
| 2021年 | Saccharomyces cerevisiae | 代谢工程 | 葡萄糖 | 2.3 g·L-1 | [ | 
| 2021年 | 酶(MAT+SAMDC) | 酶催化 | Sam和腐胺 | 3.7 g·L-1 | [ | 
Table 1 List of different types of microbial fermentation methods for spermidine
| 时间 | 菌株/平台 | 方法 | 底物 | 产量 | 参考文献 | 
|---|---|---|---|---|---|
| 2017年 | Saccharomyces cerevisiae | 代谢工程 | 葡萄糖/木糖 | 224.0 mg·L-1 | [ | 
| 2020年 | Bacillus amyloliquefaciens | 代谢工程 | 果糖/木糖 | 227.4 mg·L-1 | [ | 
| 2021年 | Saccharomyces cerevisiae | 代谢工程 | 葡萄糖 | 2.3 g·L-1 | [ | 
| 2021年 | 酶(MAT+SAMDC) | 酶催化 | Sam和腐胺 | 3.7 g·L-1 | [ | 
| 1 | LEI J, JIANG X, LI W, et al.. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis[J]. Protein Cell, 2022, 13(3): 220-226. | 
| 2 | LI Z, ZHOU D, ZHANG D, et al.. Folic acid inhibits aging-induced telomere attrition and apoptosis in astrocytes in vivo and in vitro [J]. Cereb. Cortex, 2022, 32(2): 286-297. | 
| 3 | BHARATH L P, AGRAWAL M, MCCAMBRIDGE G, et al.. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation[J]. Cell Metab., 2020, 32(1): 44-55. | 
| 4 | MOSSAD O, BATUT B, YILMAZ B, et al.. Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N(6)-carboxymethyllysine[J]. Nat. Neurosci., 2022, 25(3): 295-305. | 
| 5 | TRACY T E, MADERO-PÉREZ J, SWANEY D L, et al.. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration[J]. Cell, 2022, 185(4): 712-728. | 
| 6 | SAIKI S, SASAZAWA Y, FUJIMAKI M, et al.. A metabolic profile of polyamines in parkinson disease: a promising biomarker[J]. Ann. Neurol., 2019, 86(2): 251-263. | 
| 7 | LI J, ZHANG L, XIONG J, et al.. Polyamines disrupt the KaiABC oscillator by inducing protein denaturation[J/OL]. Molecules, 2019, 24(18): 3351[2024-04-12]. . | 
| 8 | MUÑOZ-ESPARZA N C, COSTA-CATALA J, COMAS-BASTÉ O, et al.. Occurrence of polyamines in foods and the influence of cooking processes[J/OL]. Foods, 2021, 10(8): 1752[2024-04-12]. . | 
| 9 | OSBORNE D L, SEIDEL E R. Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation[J]. Am. J. Physiol., 1990, 258(4 Pt 1): 576-584. | 
| 10 | MILLER-FLEMING L, OLIN-SANDOVAL V, CAMPBELL K, et al.. Remaining mysteries of molecular biology: the role of polyamines in the cell[J]. J. Mol. Biol., 2015, 427(21): 3389-3406. | 
| 11 | SCALABRINO G, FERIOLI M E. Polyamines in mammalian ageing: an oncological problem, too? A review[J]. Mech. Ageing Dev., 1984, 26(2-3): 149-164. | 
| 12 | IGARASHI K, KASHIWAGI K. Modulation of cellular function by polyamines[J]. Int. J. Biochem. Cell Biol., 2010, 42(1): 39-51. | 
| 13 | TAIT G H. A new pathway for the biosynthesis of spermidine[J]. Biochem. Soc. Trans., 1976, 4(4): 610-612. | 
| 14 | QIAN Z G, XIA X X, LEE S Y. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine[J]. Biotechnol. Bioeng., 2009, 104(4): 651-662. | 
| 15 | DAVIS R H, MORRIS D R, COFFINO P. Sequestered end products and enzyme regulation: the case of ornithine decarboxylase[J]. Microbiol. Rev., 1992, 56(2): 280-290. | 
| 16 | PEGG A E. Mammalian polyamine metabolism and function[J]. IUBMB Life, 2009, 61(9): 880-894. | 
| 17 | KIM S K, JIN Y S, CHOI I G, et al.. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents[J]. Metab. Eng., 2015, 29: 46-55. | 
| 18 | LIU Y, GUO X, WANG X, et al.. A two-enzyme cascade system for the bio-production of spermidine from putrescine[J/OL]. Mol. Catal., 2021, 504: 111439[2024-04-12]. . | 
| 19 | LI L, ZOU D, JI A, et al.. Multilevel metabolic engineering of Bacillus amyloliquefaciens for production of the platform chemical putrescine from sustainable biomass hydrolysates[J]. ACS Sustain. Chem. Eng., 2020, 8(5): 2147-2157. | 
| 20 | HANFREY C C, PEARSON B M, HAZELDINE S, et al.. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota[J]. J. Biol. Chem., 2011, 286(50): 43301-43312. | 
| 21 | QIN J, KRIVORUCHKO A, JI B, et al.. Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues[J]. Nat. Catal., 2021, 4: 498-509. | 
| 22 | DUDLEY H W, ROSENHEIM M C, ROSENHEIM O. The chemical constitution of spermine. I. the isolation of spermine from animal tissues, and the preparation of its salts[J]. Biochem. J., 1924, 18(6): 1263-1272. | 
| 23 | EISENBERG T, KNAUER H, SCHAUER A, et al.. Induction of autophagy by spermidine promotes longevity[J]. Nat. Cell Biol., 2009, 11(11): 1305-1314. | 
| 24 | MADEO F, EISENBERG T, BÜTTNER S, et al.. Spermidine: a novel autophagy inducer and longevity elixir[J]. Autophagy, 2010, 6(1): 160-162. | 
| 25 | PIETROCOLA F, LACHKAR S, ENOT D P, et al.. Spermidine induces autophagy by inhibiting the acetyltransferase EP300[J]. Cell Death Differ., 2015, 22(3): 509-516. | 
| 26 | PULESTON D J, BUCK M D, KLEIN GELTINK R I, et al.. Polyamines and eIF5A hypusination modulate mitochondrial respiration and macrophage activation[J]. Cell Metab., 2019, 30(2): 352-363. | 
| 27 | KEE K, FOSTER B A, MERALI S, et al.. Activated polyamine catabolism depletes acetyl-CoA pools and suppresses prostate tumor growth in TRAMP mice[J]. J. Biol. Chem., 2004, 279(38): 40076-40083. | 
| 28 | JELL J, MERALI S, HENSEN M L, et al.. Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA[J]. J. Biol. Chem., 2007, 282(11): 8404-8413. | 
| 29 | PEGG A E. Spermidine/spermine-N(1)-acetyltransferase: a key metabolic regulator[J]. Am. J. Physiol. Endocrinol. Metab., 2008, 294(6): 995-1010. | 
| 30 | LIANG Y, PIAO C, BEUSCHEL C B, et al.. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction[J/OL]. Cell Rep., 2021, 35(2): 108941[2024-04-12]. . | 
| 31 | ZHANG H, ALSALEH G, FELTHAM J, et al.. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence[J]. Mol. Cell, 2019, 76(1): 110-125. | 
| 32 | SCHROEDER S, HOFER S J, ZIMMERMANN A, et al.. Dietary spermidine improves cognitive function[J/OL]. Cell Rep., 2021, 35(2): 108985[2024-04-12]. . | 
| 33 | ALSALEH G, PANSE I, SWADLING L, et al.. Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses[J/OL]. eLife, 2020, 9: e57950[2024-04-12]. . | 
| 34 | 王珍,杨洛,廖敏,等.mTOR信号通路在糖尿病肾病发病机制中的研究进展[J].生物技术进展,2021,11(3):316-321. | 
| WANG Z, YANG L, LIAO M, et al.. Research progress of mTOR pathway in pathogenesis of diabetic nephropathy[J]. Curr. Biotechnol., 2021, 11(3): 316-321. | |
| 35 | 郭婧雅,张萍,赵雨菡,等.肥胖诱导的骨骼肌萎缩机制研究进展[J].生物技术进展,2022,12(6):861-868. | 
| GUO J Y, ZHANG P, ZHAO Y H, et al.. Advances on the mechanism of obesity-induced skeletal muscle atrophy[J]. Curr. Biotechnol., 2022, 12(6): 861-868. | |
| 36 | YAN J, YAN J Y, WANG Y X, et al.. Spermidine-enhanced autophagic flux improves cardiac dysfunction following myocardial infarction by targeting the AMPK/mTOR signalling pathway[J]. Br. J. Pharmacol., 2019, 176(17): 3126-3142. | 
| 37 | PARTRIDGE L, FUENTEALBA M, KENNEDY B K. The quest to slow ageing through drug discovery[J]. Nat. Rev. Drug Discov., 2020, 19(8): 513-532. | 
| 38 | QI Y, QIU Q, GU X, et al.. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts[J/OL]. Sci. Rep., 2016, 6: 24700[2024-04-12. . | 
| 39 | 张维,王红芳,胥保华.生物衰老的主要分子机制概述[J].生物技术进展,2023,13(2):228-233. | 
| ZHANG W, WANG H F, XU B H. Overview of the main molecular mechanisms of biological aging[J]. Curr. Biotechnol., 2023, 13(2): 228-233. | |
| 40 | SINGH S, KUMAR R, GARG G, et al.. Spermidine, a caloric restriction mimetic, provides neuroprotection against normal and D-galactose-induced oxidative stress and apoptosis through activation of autophagy in male rats during aging[J]. Biogerontology, 2021, 22(1): 35-47. | 
| 41 | D'ADAMO S, CETRULLO S, GUIDOTTI S, et al.. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes[J]. Free. Radic. Biol. Med., 2020, 153: 159-172. | 
| 42 | JIANG D, WANG X, ZHOU X, et al.. Spermidine alleviating oxidative stress and apoptosis by inducing autophagy of granulosa cells in Sichuan white geese[J/OL]. Poult. Sci., 2023, 102(9): 102879[2024-04-12]. . | 
| 43 | ZHENG Z, WANG Z G, CHEN Y, et al.. Spermidine promotes nucleus pulposus autophagy as a protective mechanism against apoptosis and ameliorates disc degeneration[J]. J. Cell. Mol. Med., 2018, 22(6): 3086-3096. | 
| 44 | AL-HABSI M, CHAMOTO K, MATSUMOTO K, et al.. Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice[J/OL]. Science, 2022, 378(6618): eabj3510[2024-04-12]. . | 
| 45 | CARRICHE G M, ALMEIDA L, STÜVE P, et al.. Regulating T-cell differentiation through the polyamine spermidine[J]. J. Allergy Clin. Immunol., 2021, 147(1): 335-348. | 
| 46 | LI X, ZHOU X, LIU X, et al.. Spermidine protects against acute kidney injury by modulating macrophage NLRP3 inflammasome activation and mitochondrial respiration in an eIF5A hypusination-related pathway[J/OL]. Mol. Med., 2022, 28(1): 103[2024-04-12]. . | 
| 47 | DU FOSSÉ N A, VAN DER HOORN M P, VAN LITH J M M, et al.. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis[J]. Hum. Reprod. Update, 2020, 26(5): 650-669. | 
| 48 | ZHANG Y, BAI J, CUI Z, et al.. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging[J]. Nat. Aging, 2023, 3(11): 1372-1386. | 
| 49 | 徐磊. 2018年中国生理学会运动生理学专业委员会会议暨"科技创新与运动生理学"学术研讨会论文集,北京体育大学, 2018 [C]//武汉:武汉体育学院研究生院,2018. | 
| 50 | 范晶晶.第四届全国运动生理与生物化学学术会议—运动·体质·健康论文摘要汇编[C]//中国体育科学学会运动生理与生物化学分会,2016. | 
| 51 | 王誉西.亚精胺通过促进细胞自噬流抑制人脐静脉内皮细胞衰老[D].广州:南方医科大学,2019. | 
| 52 | FU J, PENG L, TAO T, et al.. Regulatory roles of the miR-200 family in neurodegenerative diseases[J/OL]. Biomed. Pharmacother., 2019, 119: 109409[2024-04-12]. . | 
| 53 | GUO F, LIU X, CAI H, et al.. Autophagy in neurodegenerative diseases: pathogenesis and therapy[J]. Brain Pathol., 2018, 28(1): 3-13. | 
| 54 | METAXAKIS A, PLOUMI C, TAVERNARAKIS N. Autophagy in age-associated neurodegeneration[J/OL]. Cells, 2018, 7(5): 37[2024-04-12]. . | 
| 55 | BÜTTNER S, BROESKAMP F, SOMMER C, et al.. Spermidine protects against α-synuclein neurotoxicity[J]. Cell Cycle Georget. Tex, 2014, 13(24): 3903-3908. | 
| 56 | FAN J, YANG X, LI J, et al.. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11): 17475-17490. | 
| 57 | CUANALO-CONTRERAS K, MORENO-GONZALEZ I. Natural products as modulators of the proteostasis machinery: implications in neurodegenerative diseases[J/OL]. Int. J. Mol. Sci., 2019, 20(19): 4666[2024-04-12]. . | 
| 58 | PHADWAL K, KURIAN D, SALAMAT M K F, et al.. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates[J/OL]. Sci. Rep., 2018, 8(1): 10004[2024-04-12]. . | 
| 59 | VIJAYAN B, RAJ V, NANDAKUMAR S, et al.. Spermine protects alpha-synuclein expressing dopaminergic neurons from manganese-induced degeneration[J]. Cell Biol. Toxicol., 2019, 35(2): 147-159. | 
| 60 | GRANCARA S, ZONTA F, OHKUBO S, et al.. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation[J]. Amino Acids, 2015, 47(5): 869-883. | 
| 61 | MINOIS N, ROCKENFELLER P, SMITH T K, et al.. Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition[J/OL]. PLoS ONE, 2014, 9(7): e102435[2024-04-12]. . | 
| 62 | KISHI A, OHNO M, WATANABE S., polyamine site agonista, attenuates working memory deficits caused by blockade of hippocampal muscarinic receptors and mGluRs in rats[J]. Brain Res., 1998, 793(1-2): 311-314. | 
| 63 | VELLOSO N A, DALMOLIN G D, GOMES G M, et al.. Spermine improves recognition memory deficit in a rodent model of Huntington's disease[J]. Neurobiol. Learn. Mem., 2009, 92(4): 574-580. | 
| [1] | Lina ZHU, Zhiling SONG. Autophagy and Apoptosis: Interactions and Their Role in Disease [J]. Current Biotechnology, 2025, 15(4): 622-626. | 
| [2] | Yanjie WANG, Bo QIU. The Role and Research Progress of Gene P53 in Osteosarcoma [J]. Current Biotechnology, 2025, 15(2): 241-246. | 
| [3] | Shi HUANG, Yinyin MO, Lyujing LUO, Huiting LIU, Zhengyu CHEN, Genliang LI. Bioinformatics Analysis on the Regulation Mechanism of NHP2 on Hepatocellular Carcinoma Senescence [J]. Current Biotechnology, 2024, 14(1): 141-148. | 
| [4] | Yuzhen LI, Jiefu ZHU, Xiongfei WU. The Role of PIM1 Kinase in Cisplatin-induced Acute Kidney Injury [J]. Current Biotechnology, 2023, 13(2): 298-304. | 
| [5] | Yunpeng ZHAO, Haolin ZHANG, Qianqian XIONG, Yuting LI, Juan WANG. The Role of COPII Coat Protein SEC24A in Mammalian Macroautophagy [J]. Current Biotechnology, 2022, 12(6): 906-914. | 
| [6] | Kaiyao HOU, Erfei ZHANG, Lina ZHENG, Hongguang CHEN, Keliang XIE. The Effect of Hydrogen-rich Saline on Mitochondrial Autophagy of Myocardial Cells in Sepsis-induced Mice [J]. Current Biotechnology, 2022, 12(4): 497-502. | 
| [7] | WANG Zhen, YANG Luo, LIAO Min, HAO Yarong*. Research Progress of mTOR Pathway in Pathogenesis of Diabetic Nephropathy [J]. Curr. Biotech., 2021, 11(3): 316-321. | 
| [8] | XU Changlu, ZHAO Yanhong, MA Yige, WANG Bingrui, WANG Ding, GUO Qing, TONG Jingyuan, GAO Jie, LI Yapu, LIU Jinhua, SHI Lihong*. Dissecting the Dynamic Expression of Autophagy Related Genes at Each Stage of Human Terminal Erythriod Differentiation Through Bioinformatic Methods [J]. Curr. Biotech., 2019, 9(3): 271-276. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||