Current Biotechnology ›› 2024, Vol. 14 ›› Issue (3): 399-405.DOI: 10.19586/j.2095-2341.2023.0164
• Reviews • Previous Articles Next Articles
Zhaoqing XI1,2,3(
), Mingwei BAO1,2,3(
)
Received:2023-12-15
Accepted:2024-01-24
Online:2024-05-25
Published:2024-06-18
Contact:
Mingwei BAO
通讯作者:
包明威
作者简介:席照青 E-mail: 1067089758@qq.com;
基金资助:CLC Number:
Zhaoqing XI, Mingwei BAO. Research Progress on Glycolipid Metabolism Reprogramming of Macrophage in Non-alcoholic Fatty Liver Disease[J]. Current Biotechnology, 2024, 14(3): 399-405.
席照青, 包明威. 巨噬细胞糖脂代谢重编程在非酒精性脂肪肝中的研究进展[J]. 生物技术进展, 2024, 14(3): 399-405.
| 1 | HAN S K, BAIK S K, KIM M Y. Non-alcoholic fatty liver disease: definition and subtypes[J]. Clin. Mol. Hepatol., 2023, 29(sl): S5-S16. |
| 2 | HAN J, ZHANG X, LAU J K, et al.. Bone marrow-derived macrophage contributes to fibrosing steatohepatitis through activating hepatic stellate cells[J]. J. Pathol., 2019, 248(4): 488-500. |
| 3 | BARREBY E, CHEN P, AOUADI M. Macrophage functional diversity in NAFLD—more than inflammation[J]. Nat. Rev. Endocrinol., 2022, 18: 461-472. |
| 4 | ZHANG W, LANG R. Macrophage metabolism in nonalcoholic fatty liver disease[J/OL]. Front. Immunol., 2023, 14: 1257596[2024-04-02]. . |
| 5 | LIU W, LIU T, ZHENG Y, et al.. Metabolic reprogramming and its regulatory mechanism in sepsis-mediated inflammation[J]. J. Inflamm. Res., 2023, 16: 1195-1207. |
| 6 | SUN H J, ZHENG G L, WANG Z C, et al.. Chicoric acid ameliorates sepsis-induced cardiomyopathy via regulating macrophage metabolism reprogramming[J/OL]. Phytomedicine, 2024, 123: 155175[2024-04-02]. . |
| 7 | BANG B R, MIKI H, KANG Y J. Mitochondrial PGAM5-Drp1 signaling regulates the metabolic reprogramming of macrophages and regulates the induction of inflammatory responses[J/OL]. Front. Immunol., 2023, 14: 1243548[2024-01-19]. . |
| 8 | GUO S, ZHANG C, ZENG H, et al.. Glycolysis maintains AMPK activation in sorafenib-induced Warburg effect[J/OL]. Mol. Metab., 2023, 77: 101796[2024-01-19]. . |
| 9 | HU X, WAN X, DIAO Y, et al.. Fibrinogen-like protein 2 regulates macrophage glycolytic reprogramming by directly targeting PKM2 and exacerbates alcoholic liver injury[J/OL]. Int. Immunopharmacol., 2023, 124: 110957[2024-01-19]. . |
| 10 | SANG S Y, WANG Y J, LIANG T, et al.. Protein 4.1R regulates M1 macrophages polarization via glycolysis, alleviating sepsis-induced liver injury in mice[J/OL]. Int. Immunopharmacol., 2024, 128: 111546[2024-01-19]. . |
| 11 | RAO J, WANG H, NI M, et al.. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022, 71(12): 2539-2550. |
| 12 | IOVINO M, COLONVAL M, WILKIN C, et al.. Novel XBP1s-independent function of IRE1 RNase in HIF-1α-mediated glycolysis upregulation in human macrophages upon stimulation with LPS or saturated fatty acid[J/OL]. Front. Immunol., 2023, 14: 1204126[2024-01-19]. . |
| 13 | GROEGER M, MATSUO K, HEIDARY ARASH E, et al.. Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages[J/OL]. Nat. Commun., 2023, 14: 3902[2024-01-19]. . |
| 14 | LI J, WANG T, XIA J, et al.. Enzymatic and nonenzymatic protein acetylations control glycolysis process in liver diseases[J]. FASEB J., 2019, 33(11): 11640-11654. |
| 15 | XU F, GUO M, HUANG W, et al.. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH[J/OL]. Redox Biol., 2020, 36: 101634[2024-01-19]. . |
| 16 | YANG Y, SHENG J, SHENG Y, et al.. Lapachol treats non-alcoholic fatty liver disease by modulating the M1 polarization of Kupffer cells via PKM2[J/OL]. Int. Immunopharmacol., 2023, 120: 110380[2024-01-19]. . |
| 17 | FAN N, ZHANG X, ZHAO W, et al.. Covalent inhibition of pyruvate kinase M2 reprograms metabolic and inflammatory pathways in hepatic macrophages against non-alcoholic fatty liver disease[J]. Int. J. Biol. Sci., 2022, 18(14): 5260-5275. |
| 18 | INOMATA Y, OH J W, TANIGUCHI K, et al.. Downregulation of miR-122-5p activates glycolysis via PKM2 in kupffer cells of rat and mouse models of non-alcoholic steatohepatitis[J/OL]. Int. J. Mol. Sci., 2022, 23(9): 5230[2024-01-19]. . |
| 19 | KONG Q, LI N, CHENG H, et al.. HSPA12A is a novel player in nonalcoholic steatohepatitis via promoting nuclear PKM2-mediated M1 macrophage polarization[J]. Diabetes, 2019, 68(2): 361-376. |
| 20 | ISMAIL A, TANASOVA M. Importance of GLUT transporters in disease diagnosis and treatment[J/OL]. Int. J. Mol. Sci., 2022, 23(15): 8698[2024-01-19]. . |
| 21 | WAN L, XIA T, DU Y, et al.. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells[J]. FASEB J., 2019, 33(7): 8530-8542. |
| 22 | ZHAO H, LU J, HE F, et al.. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation[J/OL]. Immunology, 2022, 13: 931087[2024-01-19]. . |
| 23 | FREEMERMAN A J, JOHNSON A R, SACKS G N, et al.. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype[J]. J. Biol. Chem., 2014, 289(11): 7884-7896. |
| 24 | WANG X, DE CARVALHO R M, IRACHETA-VELLVE A, et al.. Macrophage-specific hypoxia-inducible factor-1α contributes to impaired autophagic flux in nonalcoholic steatohepatitis[J]. Hepatology, 2019, 69(2): 545-563. |
| 25 | CORNWELL A, ZIÓŁKOWSKI H, BADIEI A, et al.. Glucose transporter Glut1-dependent metabolic reprogramming regulates lipopolysaccharide-induced inflammation in RAW264.7 macrophages[J/OL]. Biomolecules, 2023, 13(5): 770[2024-01-19]. . |
| 26 | NOE J T, MITCHELL R A. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes[J]. J. Leukoc. Biol., 2019, 106(2): 359-367. |
| 27 | RYAN D G, O'NEILL L A J. Krebs cycle reborn in macrophage immunometabolism[J]. Annu. Rev. Immunol., 2020, 38: 289-313. |
| 28 | RUSSO S, KWIATKOWSKI M, GOVORUKHINA N, et al.. Meta-inflammation and metabolic reprogramming of macrophages in diabetes and obesity: the importance of metabolites[J/OL]. Front. Immunol., 2021, 12: 746151[2024-01-19]. . |
| 29 | XU J, TIAN Z, LI Z, et al.. Puerarin-tanshinone IIA suppresses atherosclerosis inflammatory plaque via targeting succinate/HIF-1α/IL-1β axis[J/OL]. J. Ethnopharmacol., 2023, 317: 116675[2024-01-19]. . |
| 30 | VAN DIEPEN J A, ROBBEN J H, HOOIVELD G J, et al.. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes[J]. Diabetologia, 2017, 60(7): 1304-1313. |
| 31 | LIU X J, XIE L, DU K, et al.. Succinate-GPR-91 receptor signalling is responsible for nonalcoholic steatohepatitis-associated fibrosis: effects of DHA supplementation[J]. Liver Int., 2020, 40(4): 830-843. |
| 32 | STAŇKOVÁ P, KUČERA O, PETEROVÁ E, et al.. Western diet decreases the liver mitochondrial oxidative flux of succinate: insight from a murine NAFLD model[J/OL]. Int. J. Mol. Sci., 2021, 22(13): 6908[2024-01-19]. . |
| 33 | ZHOU Q, WANG Y, LU Z, et al.. Mitochondrial dysfunction caused by SIRT3 inhibition drives proinflammatory macrophage polarization in obesity[J]. Obes. Silver Spring, 2023, 31(4): 1050-1063. |
| 34 | LITTLEWOOD-EVANS A, SARRET S, APFEL V, et al.. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis[J]. J. Exp. Med., 2016, 213(9): 1655-1662. |
| 35 | KEIRAN N, CEPERUELO-MALLAFRÉ V, CALVO E, et al.. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity[J]. Nat. Immunol., 2019, 20: 581-592. |
| 36 | LEROUX A, FERRERE G, GODIE V, et al.. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis[J]. J. Hepatol., 2012, 57(1): 141-149. |
| 37 | HOEKSTRA M, OUT R, KRUIJT J K, et al.. Diet induced regulation of genes involved in cholesterol metabolism in rat liver parenchymal and Kupffer cells[J]. J. Hepatol., 2005, 42(3): 400-407. |
| 38 | JIN R, HAO J, YI Y, et al.. Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways[J/OL]. Biochim. Biophys. Acta Mol. Cell Biol. Lipds., 2021, 1866(8): 158964[2024-01-19]. . |
| 39 | LI H, XIAO Y, TANG L, et al.. Adipocyte fatty acid-binding protein promotes palmitate-induced mitochondrial dysfunction and apoptosis in macrophages[J/OL]. Front. Immunol., 2018, 9: 81[2024-01-19]. . |
| 40 | ZHANG Y, RAO E, ZENG J, et al.. Adipose fatty acid binding protein promotes saturated fatty acid-induced macrophage cell death through enhancing ceramide production[J]. J. Immunol., 2017, 198(2): 798-807. |
| 41 | HOO R L, LEE I P, ZHOU M, et al.. Pharmacological inhibition of adipocyte fatty acid binding protein alleviates both acute liver injury and non-alcoholic steatohepatitis in mice[J]. J. Hepatol., 2013, 58(2): 358-364. |
| 42 | O'REILLY M E, KAJANI S, RALSTON J C, et al.. Nutritionally derived metabolic cues typical of the obese microenvironment increase cholesterol efflux capacity of adipose tissue macrophages[J/OL]. Mol. Nutr. Food Res., 2019, 63(2): e1800713[2024-01-19]. . |
| 43 | MARSHALL J D, COURAGE E R, ELLIOTT R F, et al.. THP-1 macrophage cholesterol efflux is impaired by palmitoleate through Akt activation[J/OL]. PLoS One, 2020, 15(5): e0233180[2024-01-19]. . |
| 44 | GUILLIAMS M, BONNARDEL J, HAEST B, et al.. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches[J]. Cell, 2022, 185(2): 379-396.e38. |
| 45 | FREDRICKSON G, FLORCZAK K, BARROW F, et al.. Hepatic lipid-associated macrophages mediate the beneficial effects of bariatric surgery against MASH[J/OL]. bioRxiv, 2023, doi: 10.1101/2023.06.11.544503[2024-01-19]. . |
| 46 | DAEMEN S, GAINULLINA A, KALUGOTLA G, et al.. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH[J/OL]. Cell Rep., 2021, 34(2): 108626[2024-01-19]. . |
| 47 | SUN Q, NIU Q, GUO Y, et al.. Regulation on citrate influx and metabolism through inhibiting SLC13A5 and ACLY: a novel mechanism mediating the therapeutic effects of curcumin on NAFLD[J]. J. Agric. Food Chem., 2021, 69(31): 8714-8725. |
| 48 | WEI X, SONG H, YIN L, et al.. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes[J]. Nature, 2016, 539(7628): 294-298. |
| 49 | SANTARSIERO A, CONVERTINI P, TODISCO S, et al.. ACLY nuclear translocation in human macrophages drives proinflammatory gene expression by NF-κB acetylation[J/OL]. Cells, 2021, 10(11): 2962[2024-01-19]. . |
| 50 | NAMGALADZE D, LIPS S, LEIKER T J, et al.. Inhibition of macrophage fatty acid β-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses[J]. Diabetologia, 2014, 57(5): 1067-1077. |
| 51 | MIYAO M, KAWAI C, KOTANI H, et al.. Mitochondrial fission in hepatocytes as a potential therapeutic target for nonalcoholic steatohepatitis[J]. Hepatol. Res., 2022, 52(12): 1020-1033. |
| 52 | STEFFEN J, NGO J, WANG S P, et al.. The mitochondrial fission protein Drp1 in liver is required to mitigate NASH and prevents the activation of the mitochondrial ISR[J/OL]. Mol. Metab., 2022, 64: 101566[2024-01-19]. . |
| 53 | PAN J, OU Z, CAI C, et al.. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release[J]. Cell Immunol., 2018, 332: 111-120. |
| 54 | GOIKOETXEA-USANDIZAGA N, SERRANO-MACIá M, DELGADO T C, et al.. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals[J]. Hepatology, 2022, 75(3): 550-566. |
| 55 | LEE A H, OH J H, KIM H S, et al.. Peripheral blood mononuclear cell mitochondrial copy number and adenosine triphosphate inhibition test in NAFLD[J/OL]. Endocrinol. Lausanne., 2022, 13: 967848[2024-01-19]. . |
| 56 | ZEZINA E, SNODGRASS R G, SCHREIBER Y, et al.. Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses[J]. Biochim. Biophys. Acta Mol. Cell Biol. Lipds, 2018, 1863(4): 433-446. |
| [1] | Yimiao ZHANG, Yuqin BIAN, Xinbo LIU, Jiahe PANG, Tongxuan SUN, Qiazheng DU, Wenhao XU, Tianze YIN, Hongshu SUI. Research Progress on the Cytotoxicity and Immune Effects of Carbon-based Nanomaterials [J]. Current Biotechnology, 2025, 15(4): 615-621. |
| [2] | Xiaoyu JIANG, Yi CHEN, Jingjing NI. Mechanism of miR-93 Regulating Immune-mediated Traumatic Brain Injury Through Activation of PI3K/AKT Pathway [J]. Current Biotechnology, 2025, 15(4): 711-719. |
| [3] | Xingpeng DUAN, Jingli LIU, Che WANG, Dejing SHANG. Effects of Macrophage Scavenger Receptors and Toll-like Receptors on Ox-LDL Uptake and Inflammation [J]. Current Biotechnology, 2024, 14(4): 668-675. |
| [4] | Li GAO, Lei YANG, Guangpeng LI. Research Progress on the Mechanism of Skeletal Muscle Development Stimulated by Myostatin Gene Mutation [J]. Current Biotechnology, 2021, 11(4): 476-482. |
| [5] | LU Yan1, CHEN Ying2, LU Qingming1, ZHANG Ying1, LI Zhaohui1, XIE Xiaohua1*. Alteration of Myocardial Macrophage Polarization Marker Proteins After Rat Traumatic Hemorrhagic Shock [J]. Curr. Biotech., 2017, 7(3): 225-229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||