Current Biotechnology ›› 2023, Vol. 13 ›› Issue (2): 174-180.DOI: 10.19586/j.2095-2341.2022.0203
• Reviews • Previous Articles Next Articles
Received:2022-11-03
Accepted:2023-01-06
Online:2023-03-25
Published:2023-04-07
Contact:
Yongzhong LU
通讯作者:
卢永忠
作者简介:赵俊魁 E-mail:happyzhaojk@163.com;
基金资助:CLC Number:
Junkui ZHAO, Yongzhong LU. Research Progress of Cyanobacteria Cell Factories[J]. Current Biotechnology, 2023, 13(2): 174-180.
赵俊魁, 卢永忠. 蓝藻细胞工厂的研究进展[J]. 生物技术进展, 2023, 13(2): 174-180.
| 外源蛋白 | 功能 | 藻株 | 文献 |
|---|---|---|---|
| 人肝金属硫蛋白-IA( | 金属代谢、抗氧化等 | Anabaena PCC7120 | [ |
| 人尿激酶原基因(pro-urokinase) | 溶栓 | Synechococcus sp. PCC7002 | [ |
| 人肿瘤坏死因子α(hTNF-α) | 杀伤肿瘤细胞 | Anabaena PCC7102 | [ |
| 人表皮生长因子(hEGF) | 促进表皮细胞生长等 | Synechococcus sp. PCC7002 | [ |
| 抗氧化、抗辐射损伤等 | Synechococcus sp. PCC7942 | [ | |
| 人粒-巨噬细胞集落刺激因子(hGM-CSF)) | 造血调控、免疫调节等 | Anabaena PCC7102 | [ |
| Eta1-L-Gapdh蛋白 | 预防鱼类迟缓爱德华氏菌感染 | Anabaena PCC7120 | [ |
| 病毒包膜蛋白(vp28) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942, Anabaena PCC7120 | [ |
| 人粒细胞集落刺激因子(hG-CSF) | 造血调控 | Anabaena PCC7102 | [ |
| 病毒包膜蛋白(vp19) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942 | [ |
| 胸腺α1(Tα1) | 增强免疫 | Spirulina | [ |
Table 1 Expression of exogenous protein in cyanobacteria
| 外源蛋白 | 功能 | 藻株 | 文献 |
|---|---|---|---|
| 人肝金属硫蛋白-IA( | 金属代谢、抗氧化等 | Anabaena PCC7120 | [ |
| 人尿激酶原基因(pro-urokinase) | 溶栓 | Synechococcus sp. PCC7002 | [ |
| 人肿瘤坏死因子α(hTNF-α) | 杀伤肿瘤细胞 | Anabaena PCC7102 | [ |
| 人表皮生长因子(hEGF) | 促进表皮细胞生长等 | Synechococcus sp. PCC7002 | [ |
| 抗氧化、抗辐射损伤等 | Synechococcus sp. PCC7942 | [ | |
| 人粒-巨噬细胞集落刺激因子(hGM-CSF)) | 造血调控、免疫调节等 | Anabaena PCC7102 | [ |
| Eta1-L-Gapdh蛋白 | 预防鱼类迟缓爱德华氏菌感染 | Anabaena PCC7120 | [ |
| 病毒包膜蛋白(vp28) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942, Anabaena PCC7120 | [ |
| 人粒细胞集落刺激因子(hG-CSF) | 造血调控 | Anabaena PCC7102 | [ |
| 病毒包膜蛋白(vp19) | 预防对虾白斑综合征病毒 | Synechococcus sp. PCC7942 | [ |
| 胸腺α1(Tα1) | 增强免疫 | Spirulina | [ |
| 产物 | 功能 | 藻种名 | 文献 |
|---|---|---|---|
| 色氨酸 | 动物饲料添加剂等 | Synechocystis sp. PCC6803 | [ |
| 二十碳五烯酸 | 降血脂、降血压等 | Synechococcus sp. NKBG042902 | [ |
| ω-3脂肪酸 | 调整血脂、生物能源 | Synechococcus sp. NKBG15041c | [ |
| 柠檬烯 | 镇咳、祛痰、抑菌等 | Synechocystis sp. PCC6803 | [ |
| 鲨烯 | 药用 | Synechocystis sp. PCC6803 | [ |
| 肌醇 | 生长因子 | Synechocystis sp. PCC6803 | [ |
| 虾青素 | 抗氧化 | Synechocystis sp. PCC6803 | [ |
| 维生素B2 | 维生素 | Synechococcus sp. PCC7002 | [ |
| 木糖醇 | 防龋齿、改善肝功能、调节肠道等 | Synechococcus sp. PCC7942 | [ |
| 海澡糖 | 食品添加剂 | Synechocystis sp. PCC6803 | [ |
| 乙醇 | 生物能源 | Synechococcus sp. PCC7942, Synechococcus sp. PCC7002 | [ |
| 氢气 | 生物能源 | Cyanothece sp. ATCC51142 | [ |
| 聚羟基脂肪酸酯 | 生物塑料 | Synechococcus sp. MA19 | [ |
| 乙烯 | 化工原料 | Synechocystis sp. PCC6803 | [ |
| 异丁醇 | 化工原料、能源 | Synechocystis sp. PCC6803 | [ |
| 丁二醇 | 化工原料、能源 | Synechococcus sp. PCC7942 | [ |
| 聚乳酸 | 生物塑料 | Synechococcus sp. PCC7942 | [ |
Table 2 Metabolic engineering products of cyanobacteria
| 产物 | 功能 | 藻种名 | 文献 |
|---|---|---|---|
| 色氨酸 | 动物饲料添加剂等 | Synechocystis sp. PCC6803 | [ |
| 二十碳五烯酸 | 降血脂、降血压等 | Synechococcus sp. NKBG042902 | [ |
| ω-3脂肪酸 | 调整血脂、生物能源 | Synechococcus sp. NKBG15041c | [ |
| 柠檬烯 | 镇咳、祛痰、抑菌等 | Synechocystis sp. PCC6803 | [ |
| 鲨烯 | 药用 | Synechocystis sp. PCC6803 | [ |
| 肌醇 | 生长因子 | Synechocystis sp. PCC6803 | [ |
| 虾青素 | 抗氧化 | Synechocystis sp. PCC6803 | [ |
| 维生素B2 | 维生素 | Synechococcus sp. PCC7002 | [ |
| 木糖醇 | 防龋齿、改善肝功能、调节肠道等 | Synechococcus sp. PCC7942 | [ |
| 海澡糖 | 食品添加剂 | Synechocystis sp. PCC6803 | [ |
| 乙醇 | 生物能源 | Synechococcus sp. PCC7942, Synechococcus sp. PCC7002 | [ |
| 氢气 | 生物能源 | Cyanothece sp. ATCC51142 | [ |
| 聚羟基脂肪酸酯 | 生物塑料 | Synechococcus sp. MA19 | [ |
| 乙烯 | 化工原料 | Synechocystis sp. PCC6803 | [ |
| 异丁醇 | 化工原料、能源 | Synechocystis sp. PCC6803 | [ |
| 丁二醇 | 化工原料、能源 | Synechococcus sp. PCC7942 | [ |
| 聚乳酸 | 生物塑料 | Synechococcus sp. PCC7942 | [ |
| 1 | JAISWAL D, SAHASRABUDDHE D, WANGIKAR P P. Cyanobacteria as cell factories: the roles of host and pathway engineering and translational research[J]. Curr. Opin. Biotechnol., 2022, 73: 314-322. |
| 2 | NG I S, KESKIN B B, TAN S I. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria[J/OL]. Biotechnol. J., 2020, 15(8): e1900228[2022-12-20]. . |
| 3 | RUFFING A M, KALLAS T. Editorial: cyanobacteria: the green E . coli[J/OL]. Front. Bioeng. Biotechnol., 2016, 4: 7[2022-12-20]. . |
| 4 | 席超,王春梅,施定基.蓝藻基因工程应用研究进展[J].中国生物工程杂志,2010,30(3):105-111. |
| 5 | 徐旭东,孔任秋,胡玉祥.基因工程杀蚊幼蓝藻的研究[J].中国媒介生物学及控制杂志,1993,4(4):244-247. |
| 6 | 任黎,邵强,施定基,等.人肝金属硫蛋白-IA基因在鱼腥藻中的克隆与表达[J].中国生物化学与分子生物学报,1998,14(4):15-21. |
| 7 | 罗娜,宁叶,施定基,等.人尿激酶原基因在聚球藻7002中的克隆和表达[J].植物学报,2000,42(9):931-935. |
| 8 | 施定基,叶欣,钟晖,等. TNFα基因在鱼腥藻7120中的表达及其产物的亲和层析纯化[J].植物学报,2001,43(1):46-50. |
| 9 | 戴溦,施定基,张卉,等.人表皮生长因子(hEGF)基因在蓝藻中的表达[J].植物学报,2001,43(12):1260-1264. |
| 10 | 刘仁海,高淑彬,章军,等.转hCu,Zn-SOD突变基因聚球藻抗氧化作用的研究[J].中国海洋药物,2007,26(6):10-12. |
| 11 | 魏兰珍,谭玮,王全喜.启动子Pcpcβ提高鱼腥藻7120中hGM-CSF基因表达效率的研究[J].西北植物学报,2008,28(1):37-42. |
| 12 | 王智,张泽峰,王晶晶,等.迟缓爱德华氏菌Eta1-L-Gapdh融合蛋白在蓝藻中的表达[J].微生物学杂志,2016,36(5):78-84. |
| 13 | 郭媛媛,殷嵘,施定基,等.转vp28蓝藻口服剂对凡纳滨对虾抗白斑综合征病毒能力及免疫反应的影响[J].水产学报,2017, 41(9):1473-1485. |
| 14 | 庄旻敏,贾晓会,施定基,等.转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J].中国生物工程杂志,2018,38(4):30-37. |
| 15 | 徐杨,谢京昆,李赟卉,等.转基因vp28蓝藻口服疫苗半数有效量测定及其对斑马鱼的安全评价[J].水产学报,2021,45(2):255-264. |
| 16 | 谢雪晴,田钰琪,田敬欢,等.T7 RNA聚合酶基因表达系统在鱼腥藻7120中构建及hG-CSF的表达[J].生物工程学报,2020,36(11):2467-2477. |
| 17 | 朱婵,施定基,何培民,等.转基因聚球藻7942的vp19基因表达效率及其光合生理特性研究[J].上海农业学报,2021,37(4): 36-41. |
| 18 | 朱小明,章军,徐虹,等.转胸腺素基因螺旋藻的表达及免疫增强活性研究[J].福建农业学报,2005,20(4):228-232. |
| 19 | LUAN G, LU X. Tailoring cyanobacterial cell factory for improved industrial properties[J]. Biotechnol. Adv., 2018, 36(2): 430-442. |
| 20 | XUE Y, HE Q. Cyanobacteria as cell factories to produce plant secondary metabolites[J/OL]. Front. Bioeng. Biotechnol., 2015, 3: 57[2022-12-20]. . |
| 21 | DESHPANDE A, VUE J, MORGAN J. Combining random mutagenesis and metabolic engineering for enhanced tryptophan production in Synechocystis sp. strain PCC6803[J/OL]. Appl. Environ, Microbiol., 2020, 86(9): e02816-19[2022-12-20]. . |
| 22 | YU R, YAMADA A, WATANABE K, et al.. Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp.[J]. Lipids, 2000, 35(10): 1061-1064. |
| 23 | SANTOS-MERINO M, GARCILLÁN-BARCIA M P, DE L A CRUZ F. Engineering the fatty acid synthesis pathway in Synechococcus elongates PCC 7942 improves omega-3 fatty acid production[J/OL]. Biotechnol. Biofuels., 2018, 11: 239[2022-12-20]. . |
| 24 | LIN P C, SAHA R, ZHANG F, et al.. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocystis sp. PCC6803[J/OL]. Sci. Rep., 2017, 7(1): 17503[2022-12-20]. . |
| 25 | ENGLUND E, PATTANAIK B, UBHAYASEKERA S J, et al.. Production of squalene in Synechocystis sp. PCC 6803[J/OL]. PLoS ONE, 2014, 9(3): e90270[2022-12-20]. . |
| 26 | WANG X, CHEN L, LIU J, et al.. Light-driven biosynthesis of myo-inositol directly from CO2 in Synechocystis sp. PCC6803[J/OL]. Front. Microbiol., 2020, 11: 566117[2022-12-20]. . |
| 27 | DIAO J, SONG X, ZHANG L, et al.. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metab. Eng., 2020, 61: 275-287. |
| 28 | KACHEL B, MACK M. Engineering of Synechococcus sp. strain PCC7002 for the photoautotrophic production of light-sensitive riboflavin (vitamin B2)[J]. Metab. Eng., 2020, 62: 275-286. |
| 29 | FAN E S, LU K W, WEN R C, et al.. Photosynthetic reduction of xylose to xylitol using cyanobacteria[J/OL]. Biotechnol. J., 2020, 15(6): e1900354[2022-12-20]. . |
| 30 | QIAO Y, WANG W, LU X. Engineering cyanobacteria as cell factories for direct trehalose production from CO2 [J]. Metab. Eng., 2020, 62: 161-171. |
| 31 | ANDREWS F, FAULKNER M, TOOGOOD H S, et al.. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria[J/OL]. Biotechnol. Biofuels., 2021, 14(1): 240[2022-12-20]. . |
| 32 | AGARWAL P, SONI R, KAUR P, et al.. Cyanobacteria as a promising alternative for sustainable environment: synthesis of biofuel and biodegradable plastics[J/OL]. Front. Microbiol., 2022, 13: 939347[2022-12-20]. . |
| 33 | VEETIL V P, ANGERMAYR S A, HELLINGWERF K J. Ethylene production with engineered Synechocystis sp. PCC6803 strains[J/OL]. Microb. Cell. Fact., 2017, 16(1): 34[2022-12-20]. . |
| 34 | VARMAN A M, XIAO Y, PAKRASI H B, et al.. Metabolic engineering of Synechocystis sp. strain PCC6803 for isobutanol production[J]. Appl. Environ. Microbiol., 2013, 79(3): 908-914. |
| 35 | OLIVER J W, MACHADO I M, YONEDA H, et al.. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol[J]. Proc. Natl Acad. Sci. USA, 2013, 110(4): 1249-1254. |
| 36 | TAN C, TAO F, XU P. Direct carbon capture for the production of high-performance biodegradable plastics by cyanobacterial cell factories[J]. Green. Chem., 2022, 24: 4470-4483. |
| 37 | 张春月,金佳杨,邱勇隽,等.传统与未来的碰撞:食品发酵工程技术与应用进展[J].生物技术进展,2021,11(4):418-429. |
| 38 | LIU D, LIBERTON M, HENDRY J I, et al.. Engineering biology approaches for food and nutrient production by cyanobacteria[J]. Curr. Opin. Biotechnol., 2021, 67: 1-6. |
| 39 | KRISHNAN A, QIAN X, ANANYEV G, et al.. Rewiring of cyanobacterial metabolism for hydrogen production: synthetic biology approaches and challenges[J]. Adv. Exp. Med. Biol., 2018, 1080: 171-213. |
| 40 | VELMURUGAN R, INCHAROENSAKDI A. Metabolic transformation of cyanobacteria for biofuel production[J/OL]. Chemosphere, 2022, 299: 134342[2022-12-20]. . |
| 41 | REDDING K E, APPEL J, BOEHM M, et al.. Advances and challenges in photosynthetic hydrogen production[J]. Trends. Biotechnol., 2022, 40(11): 1313-1325. |
| 42 | WANG F, GAO Y, YANG G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production[J]. Bioengineered, 2020, 11(1): 1208-1220. |
| 43 | LI C, ZHENG J, WU Y, et al.. Light-driven synthetic biology: progress in research and industrialization of cyanobacterial cell factory[J/OL]. Life(Basel), 2022, 12(10): 1537[2022-12-20]. . |
| 44 | SENGUPTA A, PAKRASI H B, WANGIKAR P P. Recent advances in synthetic biology of cyanobacteria[J]. Appl. Microbiol. Biotechnol., 2018, 102(13): 5457-5471. |
| 45 | ENGLUND E, LIANG F, LINDBERG P. Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC6803[J/OL]. Sci. Rep., 2016, 6: 36640[2022-12-20]. . |
| 46 | THIEL K, MULAKU E, DANDAPANI H, et al.. Translation efficiency of heterologous proteins is significantly affected by the genetic context of RBS sequences in engineered cyanobacterium Synechocystis sp. PCC6803[J/OL]. Microb. Cell. Fact, 2018, 17(1): 34[2022-12-20]. . |
| 47 | LIU D, PAKRASI H B. Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC6803[J/OL]. Microb. Cell. Fact, 2018, 17(1): 48[2022-12-20]. . |
| 48 | 曹豪豪,张红兵,薛溪发,等.新型基因编辑技术在单细胞微藻中的应用进展[J].生物技术进展,2021,11(1):9-15. |
| 49 | BALDANTA S, GUEVARA G, NAVARRO-LLORENS J M. SEVA-Cpf 1, a CRISPR-Cas12a vector for genome editing in cyanobacteria[J/OL]. Microb. Cell. Fact, 2022, 21(1): 103[2022-12-20]. . |
| 50 | UNGERER J, PAKRASI H B. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria[J/OL]. Sci. Rep., 2016, 6: 39681[2022-12-20]. . |
| 51 | GORDON G C, KOROSH T C, CAMERON J C, et al.. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC7002[J]. Metab. Eng., 2016, 38: 170-179. |
| 52 | YAO L, SHABESTARY K, BJÖRK S M, et al.. Pooled CRISPRi screening of the cyanobacterium Synechocystis sp. PCC6803 for enhanced industrial phenotypes[J/OL]. Nat. Commun., 2020, 11(1): 1666[2020-04-03]. . |
| 53 | HITCHCOCK A, HUNTER C N, CANNIFFE D P. Progress and challenges in engineering cyanobacteria as chassis for light-driven biotechnology[J]. Microb. Biotechnol., 2020, 13(2): 363-367. |
| 54 | 钱美文,谭春林,倪俊,等.蓝细菌细胞工厂合成聚合物单体的研究进展[J].生物工程学报,2021,37(3):1017-1031. |
| 55 | TREECE T R, GONZALES J N, PRESSLEY J R, et al.. Synthetic biology approaches for improving chemical production in cyanobacteria[J/OL]. Front. Bioeng. Biotechnol., 2022, 10: 869195[2022-12-20]. . |
| [1] | Qin WEI, Danna HUANG, Lu CHEN, Cong WANG. Research Advances on Chemical Constituents, Pharmacological Effects, Extraction Analytical and Processing Techniques of Star Anise [J]. Current Biotechnology, 2025, 15(4): 587-596. |
| [2] | Haojie LI, Xinlu LI, Kun WANG, Changrong GE. Research and Application Progress of Omics Technology in Meat Quality Evaluation [J]. Current Biotechnology, 2025, 15(3): 365-371. |
| [3] | Zhaohui CUI, Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI. Immunogenicity Formation Mechanism and Control Strategy of Biopharmaceuticals [J]. Current Biotechnology, 2025, 15(2): 212-219. |
| [4] | Xiaoni HOU, Mingdong LIU, Hao LYU, Deping YE, Lixia MA, Lihua ZHOU. Research Progress on Measuring Technology of Bio-enzyme Activity [J]. Current Biotechnology, 2025, 15(1): 58-66. |
| [5] | Yu LIU, Tian LI, Yongjun WEI, Ying WANG, Gen ZOU. The Prospect of Synthetic Biology in the New Track of Edible Fungi [J]. Current Biotechnology, 2024, 14(6): 886-891. |
| [6] | Xinze LIU, Lin FENG, Kaijing SUN, Ying SUN, Xue YANG, Guangzhe LI, Wei WU, Changbao CHEN, Yu LI, Xin JIN, Xilin WAN. Herbal Textual Research and Modern Pharmacological Analysis of Uyghur Medicine Fomes officinalis [J]. Current Biotechnology, 2024, 14(6): 920-928. |
| [7] | Rui BI, Jiangbo WU, Chunjing MA. Research Progress on Cell Surface Modification Strategies Based on Non-genetic Engineering Technologies [J]. Current Biotechnology, 2024, 14(4): 555-565. |
| [8] | Licun LIANG, Wenlong LIU, Xiaoqing LIU, Bin YAO, Huoqing HUANG, Haomeng YANG. The Effect of Chemical Reagents on the Efficiency of Gene Editing in Aspergillus tubingensis [J]. Current Biotechnology, 2024, 14(4): 586-593. |
| [9] | Jiaqi SUN, Jia GUO, Chuang ZHANG, Qing LIU, Ziyu WANG, Hanchao XIA, Buxuan QIAN, Fangfang ZHAO, Qi WANG, Jianfeng LIU, Xiangguo LIU. Research Progress of Phosphite Dehydrogenase in Genetically Engineered Microorganisms and Plants [J]. Current Biotechnology, 2024, 14(2): 173-181. |
| [10] | Hangyu QI, Tingting DU, Quanxin GAO, Qiongying TANG, Guoliang YANG, Shaokui YI. Research Progress on Social Hierarchy of Shrimps and Crabs [J]. Current Biotechnology, 2023, 13(6): 827-836. |
| [11] | Yuqi YANG, Xiuxia HE. Application of Rolling Circle Amplification Technique in Electrochemical Biosensors [J]. Current Biotechnology, 2023, 13(6): 863-867. |
| [12] | Kainan SONG, Yutong AI, Yuquan XU. Study of the Terpenoids from Stilbella sp. CGMCC 40422 [J]. Current Biotechnology, 2023, 13(4): 604-611. |
| [13] | Liang BAI, He HUANG, Ping WANG. Advances in Synthetic Biology on the Treatment of Metabolic Diseases [J]. Current Biotechnology, 2023, 13(3): 383-389. |
| [14] | Jie CHEN, Yongkang HUANG, Xi WANG. Application and Prospect of Synthetic Biology in the Field of New Chemical Materials [J]. Current Biotechnology, 2023, 13(1): 39-45. |
| [15] | Ruixue SUN, Wei MI, Zihong YE. Research Advances in Protein Interactions Based on Mass Spectrometry [J]. Current Biotechnology, 2022, 12(2): 161-167. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
