Current Biotechnology ›› 2022, Vol. 12 ›› Issue (6): 806-816.DOI: 10.19586/j.2095-2341.2022.0056
• Reviews • Previous Articles Next Articles
Yang YANG(
), Fenglin WANG, De LIU, Yuanyuan LUO, Jianhua ZHU(
)
Received:2022-04-14
Accepted:2022-08-30
Online:2022-11-25
Published:2022-11-30
Contact:
Jianhua ZHU
通讯作者:
朱建华
作者简介:杨洋 E-mail: yang3317@qq.com;
基金资助:CLC Number:
Yang YANG, Fenglin WANG, De LIU, Yuanyuan LUO, Jianhua ZHU. Research Progress of CRISPR⁃Cas9 Technology on the Production of Plant Secondary Metabolites[J]. Current Biotechnology, 2022, 12(6): 806-816.
杨洋, 王凤林, 刘德, 罗园园, 朱建华. CRISPR⁃Cas9技术在植物次生代谢物生产中的研究进展[J]. 生物技术进展, 2022, 12(6): 806-816.
| 1 | WOODFORD N, ELLINGTON M J. The emergence of antibiotic resistance by mutation[J]. Clin. Microbiol. Infect., 2007,13(1): 5-18. |
| 2 | BAK R O, GOMEZ-OSPINA N, PORTEUS M H. Gene editing on center stage[J]. Trends Genet., 2018, 34(8): 600-611. |
| 3 | STODDARD B L. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification[J]. Structure, 2011,19(1): 7-15. |
| 4 | KIM S, LEE M J, KIM H, et al.. Preassembled zinc-finger arrays for rapid construction of ZFNs[J/OL]. Nat. Methods, 2011, 8(1): 7 [2022-01-18]. . |
| 5 | BOCH J, SCHOLZE H, SCHORNACK S, et al.. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science, 2009, 326(5959): 1509-1512. |
| 6 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
| 7 | CARROLL D. Genome engineering with targetable nucleases[J]. Annu. Rev. Biochem., 2014, 83(1): 409-439. |
| 8 | GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol., 2013, 31(7): 397-405. |
| 9 | 杜丽娜,张存莉,朱玮,等.植物次生代谢合成途径及生物学意义[J].西北林学院学报, 2005(3): 150-155. |
| 10 | 孙立影,于志晶,李海云,等.植物次生代谢物研究进展[J].吉林农业科学, 2009, 34(4): 4-10. |
| 11 | LI J F, NORVILLE J E, AACH J, et al.. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nat. Biotechnol., 2013, 31(8): 688-691. |
| 12 | 胡黎明,彭彦,郑文杰,等. 利用CRISPR/Cas9技术创制镉低积累香型水稻[J]. 杂交水稻,2021,36(6):77-83. |
| 13 | 李红英,高延武,于茹恩,等.利用CRISPR/Cas9技术创建拟南芥Argonaute2基因缺失突变体[J].浙江农业学报, 2021, 33(11): 2001-2008. |
| 14 | 冯吉,程玲,蔡长春,等. 基于CRISPR/Cas9技术的烟草烟碱相关基因敲除及功能研究[J]. 中国烟草科学, 2021,42(2): 84-90. |
| 15 | 曹巧,史占良,张国丛,等. CRISPR/Cas9技术在小麦育种中的应用进展[J].生物技术进展, 2021, 11(6): 661-667. |
| 16 | CAI Y, CHEN L, SUN S, et al.. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean[J]. Int. J. Mol. Sci., 2018, 19(12): 3835. |
| 17 | 娄红梅,杨庆玲,向小雪.番茄MYB44基因敲除载体构建研究[J].特种经济动植物, 2022, 25(1): 19-22. |
| 18 | 王莹婕,马玲玲,梁振.CRISPR/Cas9基因组编辑技术及其在作物遗传改良中的应用进展[J].山西农业科学, 2021, 49(12): 1383-1392. |
| 19 | ISHINO Y, SHINAGAWA H, MAKINO K, et al.. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J. Bacteriol., 1987, 169(12): 5429-5433. |
| 20 | VAN BELKUM A, SCHERER S, VAN ALPHEN L, et al.. Short-sequence DNA repeats in prokaryotic genomes[J]. Microbiol. Mol. Biol. Rev., 1998, 62(2): 275-293. |
| 21 | JANSEN R, EMBDEN J D, GAASTRA W, et al.. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Mol. Microbiol., 2002, 43(6): 1565-1575. |
| 22 | ZHANG S, GUO F, YAN W, et al.. Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology[J/OL]. Front. Bioeng. Biotechnol., 2020,7(1): 459 [2022-01-18]. . |
| 23 | JIANG F, DOUDNA J A. CRISPR-Cas9 structures and mechanisms[J]. Annu. Rev. Biophys., 2017, 46(1): 505-529. |
| 24 | LOMBARDI L, TURNER S A, ZHAO F, et al.. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9[J/OL]. Sci. Rep., 2017, 7(1): 8051[2022-01-18]. . |
| 25 | VYAS V K, BUSHKIN G G, BERNSTEIN D A, et al.. New CRISPR mutagenesis strategies reveal variation in repair mechanisms among fungi[J]. Msphere, 2018, 3(2): e00154-18. |
| 26 | SYMINGTON L S, GAUTIER J. Double-strand break end resection and repair pathway choice[J]. Annu. Rev. Genet., 2011, 45(1): 247-271. |
| 27 | 方锐,畅飞,孙照霖,等.CRISPR/Cas9介导的基因组定点编辑技术[J].生物化学与生物物理进展, 2013, 40(8): 691-702. |
| 28 | 马笃军,彭力平,周紫琼,等.基于CRISPR/Cas9技术编辑RAB39B基因对骨髓间充质干细胞软骨分化的影响[J].中国组织工程研究, 2022, 26(19): 2978-2984. |
| 29 | MIAO C, XIAO L, HUA K, et al.. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(23): 6058-6063. |
| 30 | ZHAO H, LI Y, HE L, et al.. In vivo AAV-CRISPR/Cas9-mediated gene editing Ameliorates atherosclerosis in familial hypercholesterolemia[J]. Circulation, 2020, 41(1): 67-79. |
| 31 | KOMOR A C, KIM Y B, PACKER M S, et al.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424. |
| 32 | PORTO E M, KOMOR A C, SLAYMAKER I M, et al.. Base editing: advances and therapeutic opportunities[J]. Nat. Rev. Drug Discov., 2020, 19(12): 839-859. |
| 33 | YARRA R, SAHOO L. Base editing in rice: current progress, advances, limitations, and future perspectives[J]. Plant Cell Rep., 2021, 40(4): 595-604. |
| 34 | WANG Y, LIU Y, ZHENG P, et al.. Microbial base editing: a powerful emerging technology formicrobial genome engineering[J]. Trends Biotechnol., 2021, 39(2): 165-180. |
| 35 | MAKAROVA K S, HAFT D H, BARRANGOU R, et al.. Evolution and classification of the CRISPR-Cas systems[J]. Nat. Rev. Microbiol., 2011, 9(6): 467-77. |
| 36 | ČERMÁK T, BALTES N J, ČEGAN R, et al.. High-frequency, precise modification of the tomato genome[J]. Genome Biol., 2015, 16(11): 1-15. |
| 37 | YU Z, CHEN Q, CHEN W, et al.. Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis [J]. J. Integr. Plant Biol., 2018, 60(5): 376-381. |
| 38 | 陈稷,张浪,黄进.兰科植物转基因技术研究进展[J].生物学教学, 2022, 47(4): 2-5. |
| 39 | 邹俊杰,徐妙云,张兰,等.转基因抗虫、耐除草剂及品质改良复合性状玉米BBHTL8-1的分子特征及功能评价[J].中国农业科技导报, 2022, 24(2): 77-85. |
| 40 | 叶兴国,杜丽璞.从转基因技术角度谈转基因植物的安全性[J].中国种业, 2016(9): 12-13. |
| 41 | LI L N. Biologically active components from traditional Chinese medicines[J]. Pure Appl. Chem., 2013, 70(3): 547-554. |
| 42 | GAO W, HILLWIG M L, HUANG L Q, et al.. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights[J]. Org. Lett., 2009, 11(22): 5170-5173. |
| 43 | LI B, CUI G, SHEN G, et al.. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza [J]. Sci. Rep., 2017, 7(1): 43320. |
| 44 | LI B, LI J, CHAI Y, HUANG Y, et al.. Targeted mutagenesis of CYP76AK2 and CYP76AK3 in Salvia miltiorrhiza reveals their roles in tanshinones biosynthetic pathway[J]. Int. J. Biol. Macromol., 2021, 189(1): 455-463. |
| 45 | 代卓毅,李洪亮,姚怡帆,等.编辑烤烟多酚氧化酶基因NtPPO8后的效应分析[J].中国烟草学报, 2022, 28(5): 73-83. |
| 46 | ADMAN E T, STENKAMP R E, SIEKER L C, et al.. A crystallographic model for azurin a 3A resolution[J]. J. Mol. Biol., 1978, 123(1): 35-47. |
| 47 | DENG C, SHI M, FU R, et al.. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza [J]. J. Exp. Bot., 2020, 71(19): 5948-5962. |
| 48 | ZHOU Z, TAN H, LI Q, et al.. CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza [J]. Phytochemistry, 2018, 148(1): 63-70. |
| 49 | ZENG L, ZHANG Q, JIANG C, et al.. Development of Atropa belladonna L. Plants with high-yield hyoscyamine and without its derivatives using the CRISPR/Cas9 system[J/OL]. Int. J. Mol. Sci., 2021, 22(4): 1731[2021-02-09]. . |
| 50 | MA W, KANG X, LIU P, et al.. The analysis of transcription factor CsHB1 effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing[J]. Proc. Biochem., 2021, 101(1): 304-311. |
| 51 | STAIGER C. Comfrey: a clinical overview[J]. Phytother. Res., 2012, 26(10): 1441-1448. |
| 52 | AVILA C, BREAKSPEAR I, HAWRELAK J, et al.. A systematic review and quality assessment of case reports of adverse events for borage (Borago officinalis), coltsfoot (Tussilago farfara) and comfrey (Symphytum officinale)[J/OL]. Fitoterapia, 2020, 142:104519[2020-02-24]. . |
| 53 | ZAKARIA M M, SCHEMMERLING B, OBER D, et al.. CRISPR/Cas9-mediated genome editing in comfrey (Symphytum officinale) hairy roots results in the complete eradication of pyrrolizidine alkaloids[J/OL]. Molecules, 2021, 26(6): 1498[2021-03-10]. . |
| 54 | KOPP T, ABDEL-TAWAB M, MIZAIKOFF B. Extracting and analyzing pyrrolizidine alkaloids in medicinal plants: a review[J]. Toxins (Basel), 2020, 12(5): 320. |
| 55 | 王威威,席飞虎,杨少峰,等. 烟草烟碱合成代谢调控研究进展[J]. 亚热带农业研究, 2016, 12(1): 62-67. |
| 56 | CHEN S, YANG Y, SHI W, et al.. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1850-1861. |
| 57 | MAHATTANATAWEE K, ROUSEFF R L. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-olfactometry and GC-PFPD[J]. Food Chem., 2014, 154(1): 1-6. |
| 58 | 张翔,史亚兴,卢柏山,等.利用CRISPR/Cas9技术编辑BADH2-1/BADH2-2创制香米味道玉米新种质[J].中国农业科学, 2021, 54(10): 2064-2075. |
| 59 | TU Y. Artemisinin- a gift from traditional Chinese medicine to the world (nobel. ecture)[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(35): 10210-10226. |
| 60 | WANG J G, XU C C, WONG Y K, et al.. Artemisinin, the magic drug discovered from traditional Chinese medicine[J]. Engineering, 2019, 5(1): 32-39. |
| 61 | SONG Y F, HE S Q, Abdallah I I, et al.. Engineering of multiple modules to improve amorphadiene production in Bacillus subtilis using CRISPR-Cas9[J]. J. Agric. Food Chem., 2021, 69(16): 4785-4794. |
| 62 | 杨林,汪逗逗,田少凯,等. 甘草DXS基因过表达及表达沉默对甘草酸生物合成的影响研究[J]. 药学学报, 2021, 56(7): 2025-2032. |
| 63 | LIU Y, ZHOU J, HU T Y. Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii [J]. Plant Cell Rep., 2020, 39(3): 409-418. |
| 64 | ROBERTS S C. Production and engineering of terpenoids in plant cell culture[J]. Nat. Chem. Biol., 2007, 3(7): 387-395. |
| 65 | 张冠华,刁倩楠. 类胡萝卜素研究进展[J]. 现代农业, 2021(4): 46-49. |
| 66 | WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al.. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4[J]. Transgenic. Res., 2018, 27(1): 25-38. |
| 67 | 左鑫,李铭铭,李欣容,等. CRISPR/Cas9技术在天目地黄RcPDS1基因编辑中的应用[J].园艺学报, 2022, 49(7): 1532-1544. |
| 68 | JAYARAJ K L, THULASIDHARAN N, ANTONY A, et al.. Targeted editing of tomato carotenoid isomerase reveals the role of 5′UTR region in gene expression regulation[J]. Plant Cell Rep., 2021, 40(4): 621-635. |
| 69 | MIYAMOTO T, TAKADA R, TOBIMATSU Y, et al.. OsMYB108 loss-of-function enriches p-coumaroylated and tricin lignin units in rice cell walls[J]. Plant J., 2019, 98(6): 975-987. |
| 70 | KUI L, CHEN H, ZHANG W, et al.. Building a genetic manipulation tool bbox for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, dendrobium officinale[J/OL]. Front. Plant Sci., 2017, 7(1): 2036 [2017-01-12]. . |
| 71 | 王琪,张浩,雷秀娟,等. 人参CAS基因CRISPR/Cas9载体的构建及初步转化[J].分子植物育种, 2021,19(8): 2603-2608. |
| 72 | 王琪.应用CRISPR/Cas9技术构建人参CAS基因和三七DS基因的载体及转化体系建立[D].北京:中国农业科学院, 2020. |
| 73 | CHOI H S, KOO H B, JEON S W, et al.. Modification of ginsenoside saponin composition via the CRISPR/Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng [J]. J. Ginseng. Res., 2022, 46(4): 505-514. |
| 74 | FENG S, SONG W, FUR, et al.. Application of the CRISPR/Cas9 system in Dioscorea zingiberensis [J]. Plant Cell Tiss. Org., 2018, 135(1): 133-141. |
| 75 | RIE B J, DANIELE S V, JØRN S, et al.. LC-MS/MS with atmospheric pressure chemical ionisation to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants[J]. Food Chem., 2011, 129(1): 129: 217-225. |
| 76 | LI J, SCARANO A, GONZALEZ N M, et al.. Biofortified tomatoes provide a new route to vitamin D sufficiency[J]. Nat. Plants, 2022, 8(6): 611-616. |
| 77 | YANG X, WANG J, XIA X, et al.. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice[J]. Plant J., 2021, 107(1): 198-214. |
| 78 | 杨迎霞,葛贤宏,孙德岭,等.花椰菜高效CRISPR/Cas9基因编辑技术体系的构建[J].天津农业科学, 2022, 28(4): 5-9. |
| 79 | WEN D, WU L, WANG M, et al.. CRISPR/Cas9-mediated targeted mutagenesis of FtMYB45 promotes flavonoid biosynthesis in tartary buckwheat (Fagopyrum tataricum)[J/OL]. Front. Plant Sci., 2022, 13: 879390[2022-05-12]. . |
| 80 | ZHANG P P, DU H Y, WANG J, et al.. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus[J]. Plant Biotechnol. J., 2020, 18(6): 1384-1395. |
| 81 | DINKINS R D, HANCOK J, COE B L, et al.. Isoflavone levels, nodulation and gene expression profiles of a CRISPR/Cas9 deletion mutant in the isoflavone synthase gene of red clover[J]. Plant Cell Rep., 2021, 40(3): 517-528. |
| [1] | Yiyang LI, Zhizheng ZHOU, Shufei WANG, Boya LIU, Yufei LIU, Xiaoyan LI, Hongshu SUI, Dongwei LIU. Application and Prospect of CRISPR/Cas9 Gene Editing Technology in Disease Treatment [J]. Current Biotechnology, 2025, 15(1): 35-42. |
| [2] | Guang HU, Zhi WANG, Wei FU, Yuting SHI, Shanshan CHEN, Liang LUO, Shuang WEI. Establishment of Detection Method Based on TaqMan Real-time Fluorescence Quantitative PCR Technology for OsWx-edited Rice [J]. Current Biotechnology, 2025, 15(1): 86-92. |
| [3] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. |
| [4] | Mingyang JIA, Lei WANG, Junfeng CHEN, Jiaqing ZHANG, Xiangzhou YAN, Baosong XING, Jing WANG. Research Progress of CRISPR/Cas9 Gene Editing Technology in Livestock and Poultry Breeding [J]. Current Biotechnology, 2024, 14(4): 529-536. |
| [5] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. |
| [6] | Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish [J]. Current Biotechnology, 2023, 13(4): 485-491. |
| [7] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. |
| [8] | Hui SUN, Chunyi ZHANG, Ling JIANG. Progress of Plant Molecular Farming in Pharmaceutical Use [J]. Current Biotechnology, 2023, 13(1): 65-71. |
| [9] | Kun YU, Jiaqi XUE, Jinkuan WANG, Yongtao YU. Research Progress on Application of CRISPR/Cas9 Gene Editing Technique in Filamentous Fungi [J]. Current Biotechnology, 2022, 12(5): 696-704. |
| [10] | Weisong GAO, Jinping DOU, Shuang WEI, Xingjian LIU, Zhifang ZHANG, Yinyu LI. Classification and Research Status of CRISPR/Cas Systems [J]. Current Biotechnology, 2022, 12(4): 532-538. |
| [11] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. |
| [12] | Yaohui HUANG, Yijie WANG, Litao YANG, Yue JIAO, Zhongwen FU. Safety Management of the Crop Produced by New Breeding Techniques [J]. Current Biotechnology, 2022, 12(2): 198-204. |
| [13] | Mengyu WANG, Haoqian WANG, Xujing WANG, Zhixing WANG. Research Progress of Gene Editing Products Detection Technology [J]. Current Biotechnology, 2021, 11(4): 438-445. |
| [14] | GERILEQIMUGE, NIU Zhenfeng, DONG Dan, ZHANG Taotao, ZHENG Rong. Application Progress of CRISPR-Cas System in Microbial Research [J]. Current Biotechnology, 2021, 11(3): 253-259. |
| [15] | CAO Haohao1, ZHANG Hongbing1*, XUE Xifa1, LI Zuoqun2, YAN Hongbo1, LI Huixuan1. Application Progress of New Gene Editing Technology in Single Cell Microalgae [J]. Curr. Biotech., 2021, 11(1): 9-15. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||