Current Biotechnology ›› 2023, Vol. 13 ›› Issue (5): 785-797.DOI: 10.19586/j.2095-2341.2023.0058
• Articles • Previous Articles Next Articles
Xiaoxu ZHANG1(
), Xiangqian XIAO1,2, Yiqun PAN1, Yexiang GU1, Li DONG1, Haoran DANG1, Xi KANG1, Minglian WANG1,2(
)
Received:2023-04-19
Accepted:2023-05-18
Online:2023-09-25
Published:2023-10-10
Contact:
Minglian WANG
张晓旭1(
), 肖向茜1,2, 潘逸群1, 顾烨翔1, 董礼1, 党浩然1, 康茜1, 王明连1,2(
)
通讯作者:
王明连
作者简介:张晓旭 E-mail: 18332756281@163.com;
基金资助:CLC Number:
Xiaoxu ZHANG, Xiangqian XIAO, Yiqun PAN, Yexiang GU, Li DONG, Haoran DANG, Xi KANG, Minglian WANG. Transfection and Inhibition of Tumor Cells by Survivin ASO Mediated by Graphene-shelled Ferro-nitride Magnetic Beads[J]. Current Biotechnology, 2023, 13(5): 785-797.
张晓旭, 肖向茜, 潘逸群, 顾烨翔, 董礼, 党浩然, 康茜, 王明连. 烯壳铁氮磁珠介导Survivin ASO对肿瘤细胞的转染和抑制作用[J]. 生物技术进展, 2023, 13(5): 785-797.
| 寡核苷酸 | 序列(5'→3') | Survivin mRNA上的靶位 |
|---|---|---|
| ASO1[ | 5'-CCCAGCCTTCCAGCTCCTTG-3' | 232~251 |
| ASO2 | 5'-CTCTATGGGGTCGTCATCTG-3' | 255~274 |
| ASO3 | 5'-TCTTGAATGTAGAGATGCGG-3' | 100~119 |
| ASO4 | 5'-CAAATCCATCATCTTACGCC-3' | 1 491~1 510 |
Table 1 Sequences of antisense oligonucletides and their target sites on the Survivin mRNA
| 寡核苷酸 | 序列(5'→3') | Survivin mRNA上的靶位 |
|---|---|---|
| ASO1[ | 5'-CCCAGCCTTCCAGCTCCTTG-3' | 232~251 |
| ASO2 | 5'-CTCTATGGGGTCGTCATCTG-3' | 255~274 |
| ASO3 | 5'-TCTTGAATGTAGAGATGCGG-3' | 100~119 |
| ASO4 | 5'-CAAATCCATCATCTTACGCC-3' | 1 491~1 510 |
| 1 | SUNG H, FERLAY J, SIEGEL R L, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin., 2021, 71(3): 209-249. |
| 2 | JOLLY P, ESTRELA P, LADOMERY M. Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers[J]. Essays Biochem., 2016, 60(1): 27-35. |
| 3 | ALHAMADANI F, ZHANG K, PARIKH R, et al.. Adverse drug reactions and toxicity of the food and drug administration-approved antisense oligonucleotide drugs[J]. Drug Metab. Dispos., 2022, 50(6): 879-887. |
| 4 | BLOKPOEL F L A, CHAN S Y, VAZQUEZ REINA S, et al.. Rapidly transducing and spatially localized magnetofection using peptide-mediated non-viral gene delivery based on iron oxide nanoparticles[J]. ACS Appl. Nano Mater., 2021, 4(1): 167-181. |
| 5 | PEERY R C, LIU J Y, ZHANG J T. Targeting survivin for therapeutic discovery: past, present, and future promises[J]. Drug Discov. Today, 2017, 22(10): 1466-1477. |
| 6 | SHOJAEI F, YAZDANI-NAFCHI F, BANITALEBI-DEHKORDI M, et al.. Trace of survivin in cancer[J]. Eur. J. Cancer Prev., 2019, 28(4): 365-372. |
| 7 | LI Y, LU W, YANG J, et al.. Survivin as a biological biomarker for diagnosis and therapy[J]. Expert Opin. Biol. Ther., 2021, 21(11): 1429-1441. |
| 8 | MOBAHAT M, NARENDRAN A, RIABOWOL K. Survivin as a preferential target for cancer therapy[J]. Int. J. Mol. Sci., 2014, 15(2): 2494-2516. |
| 9 | TAMM I, WANG Y, SAUSVILLE E, et al.. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res., 1998, 58(23): 5315-5320. |
| 10 | RAMASAMY T, RUTTALA H B, MUNUSAMY S, et al.. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics[J]. J. Control. Release, 2022, 352: 861-878. |
| 11 | MANTZ A, PANNIER A K. Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery[J]. Exp. Biol. Med., 2019, 244(2): 100-113. |
| 12 | SHIM G, KIM D, LE Q V, et al.. Nonviral delivery systems for cancer gene therapy: strategies and challenges[J]. Curr. Gene Ther., 2018, 18(1): 3-20. |
| 13 | JIAO Y, XIA Z L, ZE L J, et al.. Research progress of nucleic acid delivery vectors for gene therapy[J/OL]. Biomed. Microdevices, 2020, 22(1): 16[2022-10-10]. . |
| 14 | ZU H, GAO D. Non-viral vectors in gene therapy: recent development, challenges, and prospects[J/OL]. AAPS J., 2021, 23(4): 78[2022-10-13]. . |
| 15 | WEI B, JIN X, WANG Q, et al. Synthesis of carbon coated iron nitride nanoparticles by using microwave plasma technique[J/OL]. Mater. Res. Express, 2020, 7(9): 096103[2021-05-06]. . |
| 16 | WU Z, DENG W, ZHOU W, et al.. Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions[J]. Carbohydr. Polym., 2019, 216: 119-128. |
| 17 | LI J, WANG M, JIA R, et al.. Graphene-coated iron nitride streptavidin magnetic beads: preparation and application in SARS-CoV-2 enrichment[J/OL]. Magnetochemistry, 2022: 8[2022-10-12]. . |
| 18 | XU Z, LEI X, TU Y, et al.. Dynamic cooperation of hydrogen binding and π stacking in ssDNA adsorption on graphene oxide[J]. Chemistry, 2017, 23(53): 13100-13104. |
| 19 | LEI X, MA H, FANG H. Length feature of ssDNA adsorption onto graphene oxide with both large unoxidized and oxidized regions[J]. Nanoscale, 2020, 12(12): 6699-6707. |
| 20 | ZENG S, CHEN L, WANG Y, et al.. Exploration on the mechanism of DNA adsorption on graphene and graphene oxide via molecular simulations[J/OL]. J. Phys. D Appl. Phys., 2015, 48(27):275402[2021-11-10]. . |
| 21 | IWE I, LI Z, HUANG J. Graphene oxide and enzyme-assisted dual-cycling amplification method for sensitive fluorometric determination of DNA[J/OL]. Mikrochim. Acta, 2019, 186(11): 716[2023-01-11]. . |
| 22 | JEONG S, KIM D M, AN S Y, et al.. Fluorometric detection of influenza viral RNA using graphene oxide[J]. Anal. Biochem., 2018, 561-562: 66-69. |
| 23 | ZHENG P, WU N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review[J]. Chem. Asian J., 2017, 12(18): 2343-2353. |
| 24 | LIU B, HUANG P J, KELLY E Y, et al.. Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity[J]. Biotechnol. J., 2016, 11(6): 780-787. |
| 25 | PAUL T, BERA S C, AGNIHOTRI N, et al.. Single-molecule FRET studies of the hybridization mechanism during noncovalent adsorption and desorption of DNA on graphene oxide[J]. J. Phys. Chem. B, 2016, 120(45): 11628-11636. |
| 26 | LIANG L, SHEN X, ZHOU M, et al.. Theoretical evaluation of potential cytotoxicity of graphene quantum dot to adsorbed DNA[J/OL]. Materials, 2022, 15(21): 7435[2020-12-12]. . |
| 27 | MA Y, WANG J, WU J, et al.. Meta-analysis of cellular toxicity for graphene via data-mining the literature and machine learning[J/OL]. Sci. Total Environ., 2021, 793: 148532[2022-10-12]. . |
| 28 | SONG S, SHEN H, WANG Y, et al.. Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics[J/OL]. Colloids Surf. B Biointerfaces, 2020, 185: 110596[2023-04-11]. . |
| 29 | SHIBATA M, KANETAKA H, FURUYA M, et al.. Cytotoxicity evaluation of iron nitride nanoparticles for biomedical applications[J]. J. Biomed. Mater. Res. A, 2021, 109(10): 1784-1791. |
| 30 | 刘庆祖, 刘建恒, 王润生, 等. 聚乙二醇化锌铁氧磁性纳米颗粒对咪喹莫特的载药性能及细胞毒性研究[J]. 解放军医学院学报, 2021, 42(4): 444-450. |
| 31 | MATZURA O, WENNBORG A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows[J]. Comput. Appl. Biosci., 1996, 12(3): 247-249. |
| 32 | OLIE R A, SIMÕES-WÜST A P, BAUMANN B, et al.. A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy[J]. Cancer Res., 2000, 60(11): 2805-2809. |
| 33 | LIANG T, LI J, LIU X, et al.. Preparation of CD3 antibody-conjugated, graphene oxide coated iron nitride magnetic beads and its preliminary application in T cell separation[J/OL]. Magnetochemistry, 2021: 7050058[2021-12-19]. . |
| 34 | FERENCHAK K, DEITCH I, HUCKFELDT R. Antisense oligonucleotide therapy for ophthalmic conditions[J]. Semin. Ophthalmol., 2021, 36(5-6): 452-457. |
| 35 | GHEIBI-HAYAT S M, JAMIALAHMADI K. Antisense oligonucleotide (AS-ODN) technology: principle, mechanism and challenges[J]. Biotechnol. Appl. Biochem., 2021, 68(5): 1086-1094. |
| 36 | 梁超, 徐玲, 隋雪梅. 联合运用Survivin和VEGF反义寡核苷酸对裸鼠人肺腺癌A549移植瘤的生长抑制作用[J]. 第三军医大学学报, 2013, 35(24): 2643-2647. |
| 37 | ERBA H P, SAYAR H, JUCKETT M, et al.. Safety and pharmacokinetics of the antisense oligonucleotide (ASO) LY2181308 as a single-agent or in combination with idarubicin and cytarabine in patients with refractory or relapsed acute myeloid leukemia (AML)[J]. Invest. New Drugs, 2013, 31(4): 1023-1034. |
| 38 | CARRASCO R A, STAMM N B, MARCUSSON E, et al.. Antisense inhibition of survivin expression as a cancer therapeutic[J]. Mol. Cancer Ther., 2011, 10(2): 221-232. |
| 39 | ROBERTS T C, LANGER R, WOOD M J A. Advances in oligonucleotide drug delivery[J]. Nat. Rev. Drug Discov., 2020, 19(10): 673-694. |
| [1] | Lulu ZHAO, Tian HONG, Yiran HAO, Erning CHEN, Jingwen LI, Meihong DU. Research Progress of Immunomagnetic Separation Technology in Detection of Circulating Tumor Cell [J]. Current Biotechnology, 2025, 15(4): 606-614. |
| [2] | Lina ZHU, Zhiling SONG. Autophagy and Apoptosis: Interactions and Their Role in Disease [J]. Current Biotechnology, 2025, 15(4): 622-626. |
| [3] | Lingfei WAN, Wenting PAN, Yuting YONG, Yuanshuai LI, yue ZHAO, Xinlong YAN. Research Progress in Spatial Transcriptomics Technology for Liver Disease Research [J]. Current Biotechnology, 2025, 15(4): 645-654. |
| [4] | Yifei CAI, Yezi MA, Meijuan XIA, Cuicui LIU, Hongtao WANG, Jiaxi ZHOU. Analysis of Molecular Characteristics of Megakaryocytes Between Embryonic Aorta-gonad-mesonephros and Adult Bone Marrow [J]. Current Biotechnology, 2025, 15(4): 702-710. |
| [5] | Chuancai LIANG, Bo QIU. Echinoside Inhibits IL-1β-induced Chondrocytes Iron Death Through Nrf2/HO-1 Pathway [J]. Current Biotechnology, 2025, 15(4): 720-725. |
| [6] | Xiaoya LIU, Shuomin ZHANG, Peng ZHENG, Rui MA, Chaojun ZHANG. Role and Mechanisms of DBNDD1 in Colorectal Cancer Development [J]. Current Biotechnology, 2025, 15(4): 726-734. |
| [7] | Yu DING, Bo ZHAO, Jin ZHANG, Xudong GAO. The Role of SIRT1 Deacetylation Modification in Regulating HMGB1-mediated Pyroptosis in Chronic Sinusitis with Nasal Polyps [J]. Current Biotechnology, 2025, 15(3): 535-543. |
| [8] | Yijin LIU, Wenyang XU, Jinji WEI, Huanxi SONG, Jiahui LI, Lina ZHANG. Establishment of Stable Gastric Cancer Cell Model with PDE12 Knockdown and Overexpression Mediated by Lentivirus and its Cellular Localization Analysis [J]. Current Biotechnology, 2025, 15(2): 355-363. |
| [9] | Jingsheng TAN, Guantao ZHAO, Li ZHU, Yubin LI. The Sequence Characterization of Somatic Excision Footprints from Two-element Transposable System of rMrh/Mrh in Maize [J]. Current Biotechnology, 2024, 14(4): 601-609. |
| [10] | Xingpeng DUAN, Jingli LIU, Che WANG, Dejing SHANG. Effects of Macrophage Scavenger Receptors and Toll-like Receptors on Ox-LDL Uptake and Inflammation [J]. Current Biotechnology, 2024, 14(4): 668-675. |
| [11] | Hongbo LI, Zhuyue CHEN, Xinxing LYU. Recent Progress on Spermidine Alleviating Cell Senescence and Aging-related Diseases [J]. Current Biotechnology, 2024, 14(3): 388-398. |
| [12] | Beibei LI, Jianqiang WU. Research Progress of Fas-mediated Non-apoptotic Signaling in Tumor Cells [J]. Current Biotechnology, 2024, 14(3): 406-412. |
| [13] | Yan ZENG, Hengcheng ZHU, Kang YANG. The Mechanism of DNASE1L3 in Renal Cell Carcinoma [J]. Current Biotechnology, 2024, 14(3): 486-491. |
| [14] | Yiming LIU, Leling XIE, Haiyan XING, Kejing TANG, Min WANG, Qing RAO. Anti-leukemia Effect of Chimeric Antigen Receptor T Cells Targeting CD74 Positive Leukemia Cells [J]. Current Biotechnology, 2024, 14(3): 501-505. |
| [15] | Weijian ZHAO, Hongting XU, Xiangqian XIAO, Wang SHENG. Research Progress on Hippo Signaling Pathway in Cancer Stem Cell [J]. Current Biotechnology, 2024, 14(2): 211-220. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||