Current Biotechnology ›› 2022, Vol. 12 ›› Issue (2): 222-228.DOI: 10.19586/j.2095-2341.2021.0135
• Reviews • Previous Articles Next Articles
Received:2021-07-15
															
							
															
							
																	Accepted:2021-11-08
															
							
																	Online:2022-03-25
															
							
																	Published:2022-03-25
															
						Contact:
								Lihua JIN   
													通讯作者:
					金丽华
							作者简介:李坤 E-mail:1062832672@qq.com;
				
							基金资助:CLC Number:
Kun LI, Lihua JIN. Research Progress of Hematopoietic Lymph Gland in Drosophila[J]. Current Biotechnology, 2022, 12(2): 222-228.
李坤, 金丽华. 果蝇造血器官淋巴腺的研究进展[J]. 生物技术进展, 2022, 12(2): 222-228.
| 1 | HOLZ A, BOSSINGER B, STRASSER T, et al.. The two origins of hemocytes in Drosophila [J]. Development, 2003, 130(20): 4955-4962. | 
| 2 | GHOSH S, SINGH A, MANDAL S, et al.. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response [J]. Dev. Cell, 2015, 33(4): 478-88. | 
| 3 | SANCHEZ B P, MAKHIJANI K, HERBOSO L, et al.. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues [J]. Dev. Cell, 2019, 51(6): 787-803. | 
| 4 | LI T K, CHONG G S, SVETLANA M. Genetic screen for regulators of lymph gland homeostasis and hemocyte maturation in Drosophila [J]. G3 (Bethesda), 2012, 2(3): 393-405. | 
| 5 | YU S, LUO F, JIN L H. The Drosophila lymph gland is an ideal model for studying hematopoiesis [J]. Dev. Comp. Immunol., 2018, 83: 60-69. | 
| 6 | HARTENSTEIN V. Blood cells and blood cell development in the animal kingdom [J]. Annu. Rev. Cell Dev. Biol., 2006, 22: 677-712. | 
| 7 | EVANS C J, HARTENSTEIN V, BANERJEE U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis [J]. Dev. Cell, 2003, 5: 673-690. | 
| 8 | KOCKS C, CHO J H, NEHME N, et al.. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila [J]. Cell, 2005,123: 335-346. | 
| 9 | SHANDALA T, WOODCOCK J M, NG Y, et al.. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity [J]. Cell Sci., 2011, 124: 2165-2174. | 
| 10 | EVANS C J, LIU T, BANERJEE U. Drosophila hematopoiesis: markers and methods for molecular genetic analysis [J]. Methods, 2014, 68: 242-251. | 
| 11 | LANOT R, ZACHARY D, HOLDER F, et al.. Postembryonic hematopoiesis in Drosophila [J]. Dev. Biol., 2001, 230: 243-257. | 
| 12 | RAMET M, LANOT R, ZACHARY D, et al.. JNK pathway is required for effificient wound healing in Drosophila [J]. Dev. Biol., 2002, 241: 145-156. | 
| 13 | SÖDERHÄL K, CERENIUS L. Role of the prophenoloxidase-activating system in invertebrate immunity [J]. Curr. Opin. Immunol., 1998, 10: 23-28. | 
| 14 | TERRIENTE-FELIX A, LI J, COLLINS S, et al.. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme [J]. Development, 2013, 140(4): 926-937. | 
| 15 | BENMIMOUN B, POLESELLO C, WALTZER L, et al.. Dual role for insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila [J]. Development, 2012, 139(10): 1713-1717. | 
| 16 | SHRESTHA R, GATEFF E. Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster [J]. Dev. Growth Differ., 1982, 24: 65-82. | 
| 17 | DUDZIC J P, KONDO S, UEDA R, et al.. Drosophila innate immunity: regional and functional specialization of prophenoloxidases [J/OL]. BMC Biol., 2015, 13: 81 [2022-02-15]. . | 
| 18 | LOURADOUR I, SHARMA A, MORIN-POULARD I, et al.. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism [J/OL]. Elife, 2017, 6: e25496[2022-02-15]. . | 
| 19 | TOKUSUMI T, TOKUSUMI Y, BRAHIER M S, et al.. Screening and analysis of Janelia flylight project enhancer-gal4 strains identifies multiple gene enhancers active during hematopoiesis in normal and wasp-challenged Drosophila larvae [J]. G3 (Bethesda), 2017, 7(2): 437-448. | 
| 20 | ANDERL I, VESALA L, IHALAINEN T O, et al.. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection [J/OL]. PLoS Pathog., 2016, 12(7): e1005746[2022-02-15]. . | 
| 21 | RUGENDORFF A, YOUNOSSI-HARTENSTEIN A, HARTENST-EIN V. Embryonic origin and differentiation of the Drosophila heart[J]. Rouxs Arch. Dev. Biol., 1994, 203: 266-280. | 
| 22 | MANDAL L, BANERJEE U, HARTENSTEIN V. Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm [J]. Nat. Genet., 2004, 36(9): 1019-1023. | 
| 23 | MANDAL L, MARTINEZ-AGOSTO J A, EVANS C J, et al.. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors [J]. Nature, 2007, 446(7133): 320-324. | 
| 24 | KRZEMIEN J, OYALLON J, CROZATIER M, et al.. Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland [J]. Dev. Biol., 2010, 346: 310-319. | 
| 25 | JUNG S H, EVANS C J, UEMURA C, et al.. The Drosophila lymph gland as a developmental model of hematopoiesis [J]. Development, 2005, 132(11): 2521-2533. | 
| 26 | GRIGORIAN M, MANDAL L, HARTENSTEIN V. Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland [J]. Dev. Genes Evol., 2011, 221(3): 121-131. | 
| 27 | MINAKHINA S, STEWARD R. Hematopoietic stem cells in Drosophila [J]. Development, 2010, 137: 27-31. | 
| 28 | HARTENSTEIN V. Blood cells and blood cell development in the animal kingdom [J]. Annu. Rev. Cell Dev. Biol., 2006, 22: 677-712. | 
| 29 | IRVING P, UBEDA J M, DOUCET D, et al.. New insights into Drosophila larval haemocyte functions through genome-wide analysis [J]. Cell Microbiol., 2005, 7(3): 335-350. | 
| 30 | YU S, LUO F, JIN L H. The Drosophila lymph gland is an ideal model for studying hematopoiesis [J]. Dev. Comp. Immunol., 2018, 83: 60-69. | 
| 31 | ZHANG C U, CADIGAN K M. The matrix protein Tiggrin regulates plasmatocyte maturation in Drosophila larva [J]. Development, 2017, 144(13): 2415-2427. | 
| 32 | KRZEMIEŃ J, DUBOIS L, MAKKI R, et al.. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre [J]. Nature, 2007, 446(7133): 325-328. | 
| 33 | BENMIMOUN B, POLESELLO C, HAENLIN M, et al.. The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(29): 9052-9057. | 
| 34 | ESPINOZA I, POCHAMPALLY R, XING F, et al.. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition [J]. Onco. Targets Ther., 2013, 6: 1249-1259. | 
| 35 | KOPAN R, ILAGAN M. The canonical Notch signaling pathway: unfolding the activation mechanism [J]. Cell, 2009, 137(2): 216-233. | 
| 36 | CHO B, YOON S H, LEE D, et al.. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila [J/OL]. Nat. Commun., 2020, 11(1): 4483[2022-02-15]. . | 
| 37 | CROZATIER M, UBEDA J M, VINCENT A, et al.. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier [J/OL]. PLoS Biol., 2004, 2(8): E196[2022-02-15]. . | 
| 38 | SMALL C, RAMROOP J, OTAZO M, et al.. An unexpected link between notch signaling and ROS in restricting the difffferentiation of hematopoietic progenitors in Drosophila [J]. Genetics, 2014, 197: 471-483. | 
| 39 | BLANCO-OBREGON D, KATZ M J, DURRIEU L, et al.. Context-specific functions of Notch in Drosophila blood cell progenitors [J]. Dev. Biol., 2020, 462(1): 101-115. | 
| 40 | LEBESTKY T, CHANG T, HARTENSTEIN V, et al.. Specification of Drosophila hematopoietic lineage by conserved transcription factors [J]. Science, 2000, 288(5463): 146-149. | 
| 41 | TERRIENTE-FELIX A, LI J, COLLINS S, et al.. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme [J]. Development, 2013, 140(4) :926-937. | 
| 42 | WALTZER L, BATAILLÉ L, PEYREFITTE S, et al.. Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis [J]. EMBO J., 2002, 21(20): 5477-5486. | 
| 43 | WALTZER L, FERJOUX G, BATAILLÉ L, et al.. Cooperation between the GATA and RUNX factors serpent and lozenge during Drosophila hematopoiesis [J]. EMBO J., 2003, 22(24): 6516-6525. | 
| 44 | DEY N S, RAMESH P, CHUGH M, et al. Correction: Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila [J/OL]. Elife, 2019, 8: e51742[2022-02-15]. . | 
| 45 | FERGUSON G B, MARTINEZ-AGOSTO J A. The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling [J]. Dev. Biol., 2017, 425(1): 21-32. | 
| 46 | MAKKI R, MEISTER M, PENNETIER D, et al.. A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response [J/OL]. PLoS Biol., 2010, 8(8): e1000441[2022-02-15]. . | 
| 47 | GAO H, WU X, FOSSETT N. Drosophila E-cadherin functions in hematopoietic progenitors to maintain multipotency and block differentiation [J/OL]. PLoS ONE, 2013, 8(9): e74684[2022-02-15]. . | 
| 48 | GAO H, WU X, FOSSETT N. Upregulation of the Drosophila Friend of GATA gene U-shaped by JAK/STAT signaling maintains lymph gland prohemocyte potency [J]. Mol. Cell Biol., 2009, 29(22): 6086-6096. | 
| 49 | KULKARNI V, KHADILKAR R J, MAGADI S S, et al.. Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis [J/OL]. PLoS ONE, 2011, 6(11): e27667[2022-02-15]. . | 
| 50 | PHILLIPS R L, ERNST R E, BRUNK B, et al.. The genetic program of hematopoietic stem cells [J]. Science, 2000, 288(5471): 1635-1640. | 
| 51 | SINHA A, KHADILKAR R J, VINAY K S, et al.. Conserved regulation of the Jak/STAT pathway by the endosomal protein asrij maintains stem cell potency [J]. Cell Rep., 2013, 4(4):649-658. | 
| 52 | MONDAL B C, MUKHERJEE T, MANDAL L, et al.. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance [J]. Cell, 2011, 147(7): 1589-600. | 
| 53 | MINAKHINA S, TAN W, STEWARD R. JAK/STAT and the GATA factor Pannier control hemocyte maturation and difffferentiation in Drosophila [J]. Dev. Biol., 2011, 352: 308-316. | 
| 54 | FERGUSON G B, MARTINEZ-AGOSTO J A. The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling [J]. Dev. Biol., 2017, 425: 21-32. | 
| 55 | LAN W, LIU S, ZHAO L, et al.. Regulation of Drosophila hematopoiesis in lymph gland: from a developmental signaling point of view [J/OL]. Int. J. Mol. Sci., 2020, 21(15): 5246[2022-02-15]. . | 
| 56 | ZHAO L, WANG L, CHI C, et al.. The emerging roles of phosphatases in Hedgehog pathway [J/OL]. Cell Commun. Signal, 2017, 15: 35[2022-02-15].. | 
| 57 | BALDEOSINGH R, GAO H, WU X, et al.. Hedgehog signaling from the posterior signaling center maintains U-shaped expression and a prohemocyte population in Drosophila [J]. Dev. Biol., 2018, 441(1): 132-145. | 
| 58 | GIORDANI G, BARRACO M, GIANGRANDE A, et al.. The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent Drosophila hematopoietic progenitor cells [J]. Oncotarget, 2016, 7(34): 55313-55327. | 
| 59 | TOKUSUMI T, TOKUSUMI Y, SCHULZ R A. The miR-7 and bag of marbles genes regulate Hedgehog pathway signaling in blood cell progenitors in Drosophila larval lymph glands [J/OL]. Genesis, 2018, 56: e23210[2022-02-15].. | 
| 60 | SINENKO S A, MANDAL L, MARTINEZ-AGOSTO J A, et al.. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila [J]. Dev. Cell, 2009, 16: 756-763. | 
| 61 | SHIM J, MUKHERJEE T, MONDAL B C, et al.. Olfactory control of blood progenitor maintenance [J]. Cell, 2013, 155(5): 1141-1153. | 
| 62 | DRAGOJLOVIC-MUNTHER M, MARTINEZ-AGOSTO J A. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function [J]. Dev. Biol., 2013, 384(2): 313-330. | 
| 63 | PENNETIER D, OYALLON J, MORIN-POULARD I, et al.. Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 3389-3394. | 
| 64 | DESTALMINIL-LETOURNEAU M, MORIN-POULARD I, TIAN Y, et al.. The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling [J/OL]. Elife, 2021, 10: e64672[2022-02-15].. | 
| 65 | 张明英,袁佳佳,张晓茹,等.不同转染方法包装慢病毒感染人白血病细胞的比较研究[J].生物技术进展,2019,9(3):262-270. | 
| 66 | 许杰,王可飞,魏晓晶,等.基于生物信息学分析SCHIP1在急性髓系白血病中的表达及其临床意义[J].生物技术进展,2020,10(4):417-425. | 
| [1] | ZHU Yaoyao, ZHANG Shuo, WANG Zhengyu*. Using the Runx1c-mNeongreen Reporter Cell Line Derived from the Human Embryonic Stem Cells to Track the Definitive Hematopoiesis [J]. Curr. Biotech., 2020, 10(5): 524-533. | 
| [2] | YAO Mawulikplimi Adzavon, ZHAO Pengxiang*, ZHANG Xujuan, WANG Limin, MA Xuemei. Research Progress on Molecular Mechanism of Microphage Migration Inhibotry Factor [J]. Curr. Biotech., 2018, 8(5): 389-396. | 
| [3] | GAO Li, CHEN Yan, HU Ting-mao, LI Guang-peng*. The Latest Research Progress of Myostatin in Mammals [J]. Curr. Biotech., 2014, 4(6): 381-388. | 
| [4] | QI Xi-liang, CHENG Hong-mei*. Progress on Three Defence Genes eds1, atr/nrc1 and ahl19 [J]. Curr. Biotech., 2013, 3(4): 238-22. | 
| [5] | ZHAO Hong, LIU Yu-hui*. Human Epidermal Growth Factor and Reaserch Progress on it [J]. journal1, 2011, 1(2): 122-129. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
