| 1 | GAO Z, ZHAO H, LI Z, TAN X, et al.. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria [J]. Energy Environ. Sci., 2012, 5: 9857-9865. | 
																													
																							| 2 | MIAO R, LIU X, ENGLUND E, et al.. Lindblad P. Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases[J]. Metab. Eng. Commun., 2017, 5: 45-53. | 
																													
																							| 3 | HIROKAWA Y, KUBO T, SOMA Y, et al.. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942[J]. Metab. Engin., 2019, 57:23-30 | 
																													
																							| 4 | DUCAT D C, WAY J C, SILVER P A. Engineering cyanobacteria to generate high-value products[J]. Trends Biotechnol., 2011, 29(2): 95-103. | 
																													
																							| 5 | AFGAN N H, GOBAISI D A, CARVALHO M G, et al.. Sustainable energy development[J]. Renew. Sustain. Energy Rev., 2011, 2(3): 235-286. | 
																													
																							| 6 | JIE Z, ZHANG H, ZHANG Y, et al.. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide[J]. Metab. Eng., 2012, 14(4): 394-400. | 
																													
																							| 7 | 张燕,岳寿松,陈高,等.集胞藻Synechocystis sp. PCC 6803 slr1501的克隆及原核表达分析[J].山东农业科学,2019,51(7): 1-4. | 
																													
																							| 8 | VELMURUGAN R, INCHAROENSAKDI A. Co-cultivation of two engineered strains of Synechocystis sp. PCC 6803 results in improved bioethanol production[J]. Renew. Energy., 2020, 146: 1124-1133. | 
																													
																							| 9 | SEO S O, WANG Y, LU T, et al.. Characterization of a Clostridium beijerinckii spo0A mutant and its application for butyl butyrate production[J/OL]. Biotechnol. Bioeng., 2016, 114: 106[2021-11-11]. . | 
																													
																							| 10 | HOPPNER T C, DOELLE H W. Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production[J]. Appl. Microbiol. Biotechnol., 1983, 17(3): 152-157. | 
																													
																							| 11 | GREEN M R, SAMBROOK J. Molecular cloning: a laboratory manual[J]. Anal. Biochem., 2001, 186(1): 182-183. | 
																													
																							| 12 | CHOI Y N, PARK J M. Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803[J]. Bioresour. Technol., 2016, 213: 54-57. | 
																													
																							| 13 | WOO J E, JANG Y S. Metabolic engineering of microorganisms for the production of ethanol and butanol from oxides of carbon[J]. Appl. Microbiol. Biotechnol., 2019, 103(20): 1-10. | 
																													
																							| 14 | GOLDEN S S. Mutagenesis of cyanobacteria by classical and gene-transfer-based methods[J]. Methods Enzymol., 1988, 167: 714-727. | 
																													
																							| 15 | TAKAHASHI H, UCHIMIYA H, HIHARA Y. Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry[J]. J. Exp. Bot., 2008, 59: 3009-3018. | 
																													
																							| 16 | YOSHIKAWA K, HIRASAWA T, SHIMIZU H. Effect of malic enzyme on ethanol production by Synechocystis sp. PCC 6803 [J]. J. Biosci. Bioeng., 2015, 119(1): 82-84. | 
																													
																							| 17 | DIAO J, SONG X, ZHANG L, et al.. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metab. Eng., 2020, 61: 275-287. | 
																													
																							| 18 | GAO E B, KYERE-YEBOAH K, WU J, et al.. Photoautotrophic production of p-coumaric acid using genetically engineered Synechocystis sp. pasteur culture collection 6803[J/OL]. Algal Res., 2021, 54(1): 102180[2021-11-11]. . | 
																													
																							| 19 | WEI D, LIANGF, DUAN Y, et al.. Exploring the photosynthetic production capacity of sucrose by cyanobacteria[J]. Metab. Eng., 2013, 19: 17-25. | 
																													
																							| 20 | ANGERMAYR S A, ROVIRA A G, HELLINGWERF K J. Metabolic engineering of cyanobacteria for the synthesis of commodity products[J]. Trends Biotechnol., 2015, 33(6): 352-361. | 
																													
																							| 21 | ANGERMAYR S A, WOUDE A, CORREDDU D. Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC 6803[J/OL]. Biotechnol. Biofuels., 2014, 7(1): 99[2021-11-11]. . | 
																													
																							| 22 | MOSS N A, LIAO T, GLUKHOV E COLLECTION, et al.. Culturing, and genome analyses of tropical marine filamentous benthic cyanobacteria[J]. Methods Enzymol., 2018, 604: 3-43. | 
																													
																							| 23 | NAMAKOSHI K, NAKAJIMA T, YOSHIKAWA K, et al.. Combinatorial deletions of glgC and phaCE enhance ethanol production in Synechocystis sp. PCC 6803[J]. J. Biotechnol., 2016, 239: 13-19. |