生物技术进展 ›› 2025, Vol. 15 ›› Issue (5): 854-864.DOI: 10.19586/j.2095-2341.2025.0032
收稿日期:2025-03-05
接受日期:2025-03-28
出版日期:2025-09-25
发布日期:2025-11-11
作者简介:夏晟博 E-mail: 1412885327@qq.com
Shengbo XIA1(
), Congyang HUANG2
Received:2025-03-05
Accepted:2025-03-28
Online:2025-09-25
Published:2025-11-11
摘要:
中药在我国用于治疗疾病已有数千年的历史。中药成分复杂,来源多种多样,包括植物、动物、真菌和矿物质。多糖是中药中一种重要的活性成分。中药多糖在免疫调节、抗病毒、抗炎、抗氧化以及抗肿瘤等方面表现出广泛的生物活性,持续受到关注,当前研究主要聚焦于中药多糖的提取、纯化及其生物活性方面。随着多糖化学技术的发展,通过硫酸化、磷酸化、乙酰化等化学修饰策略定向调控多糖生物活性的研究,正成为该领域的前沿方向。综述了中药多糖化学修饰及生物活性等内容的最新研究报道,为多糖结构修饰的研究和应用提供了新的思路。
中图分类号:
夏晟博, 黄丛阳. 中药多糖化学修饰与生物活性研究进展[J]. 生物技术进展, 2025, 15(5): 854-864.
Shengbo XIA, Congyang HUANG. Research Progress on the Chemical Modification and Biological Activities of Polysaccharides from Traditional Chinese Medicine[J]. Current Biotechnology, 2025, 15(5): 854-864.
| 修饰方法 | 试剂 | 优点 | 缺点 | 参考文献 | |
|---|---|---|---|---|---|
| 硫酸化 | 三氧化硫-吡啶法 | 三氧化硫、吡啶、甲酰胺 | 操作简单,产品取代度高 | 三氧化硫比较昂贵,只适合小规模生产 | [ |
| 浓硫酸法 | 浓硫酸、正丁醇、硫酸铵 | 反应稳定,毒性小,成本低 | 浓硫酸酸性过强,易引起多糖碳化和糖链降解 | [ | |
| 氯磺酸盐-吡啶法 | 氯磺酸、吡啶、甲酰胺 | 操作简单,产品收率高,取代度高 | 氯磺酸不稳定,有急性毒性 | [ | |
| 氨基磺酸法 | 氨基磺酸、N,N-二甲基甲酰胺 | 反应轻微,毒性低 | 产物取代度更低,副作用更多 | [ | |
| 乙酰化 | 乙酸酐(乙酸)法 | 醋酸酐(或醋酸)、吡啶(或4-DMAP)、甲酰胺 | 操作步骤简单,响应时间短 | 吡啶具有高度刺激性和神经毒性;4-DMAP价格昂贵,难以大规模开发 | [ |
| 磷酸化 | 酸酐法 | 磷酸(磷酸酐)、DMSO | 操作简单,设备要求低 | 放热反应易使多糖降解 | [ |
| 三氯氧磷法 | 三氯氧磷 | 反应时间快,操作简单,取代度高 | 更多有毒副产物,反应产生的刺激性气体 | [ | |
| 磷酸盐法 | 三聚磷酸钠、三偏磷酸钠 | 操作简单,不易发生多糖降解 | 反应活性低,取代度和收率低 | [ | |
| 五氧化二磷法 | 甲磺酸、P2O5 | 反应时间短 | 五氧化二磷酸性较强,易降解多糖 | [ | |
| 羧甲基化修饰 | 氯乙酸法 | 氯乙酸、20%NaOH、异丙醇 | 试剂易得、成本低、反应生成的物质毒性低或无毒 | 降低多糖的机械强度和结构稳定性 | [ |
| 硒化修饰 | 硒酸盐法 | 硝酸(或冰醋酸)、亚硒酸钠 | 成本低 | 反应时间长,步骤复杂 | [ |
| 氯氧化硒法 | 氯氧化硒 | 操作步骤简单 | SeOCl2易分解,反应会产生刺激性有毒气体 | [ |
表1 几种常用多糖化学修饰方法的优缺点
Table 1 The advantages and disadvantages of several common methods for polysaccharide chemical modification
| 修饰方法 | 试剂 | 优点 | 缺点 | 参考文献 | |
|---|---|---|---|---|---|
| 硫酸化 | 三氧化硫-吡啶法 | 三氧化硫、吡啶、甲酰胺 | 操作简单,产品取代度高 | 三氧化硫比较昂贵,只适合小规模生产 | [ |
| 浓硫酸法 | 浓硫酸、正丁醇、硫酸铵 | 反应稳定,毒性小,成本低 | 浓硫酸酸性过强,易引起多糖碳化和糖链降解 | [ | |
| 氯磺酸盐-吡啶法 | 氯磺酸、吡啶、甲酰胺 | 操作简单,产品收率高,取代度高 | 氯磺酸不稳定,有急性毒性 | [ | |
| 氨基磺酸法 | 氨基磺酸、N,N-二甲基甲酰胺 | 反应轻微,毒性低 | 产物取代度更低,副作用更多 | [ | |
| 乙酰化 | 乙酸酐(乙酸)法 | 醋酸酐(或醋酸)、吡啶(或4-DMAP)、甲酰胺 | 操作步骤简单,响应时间短 | 吡啶具有高度刺激性和神经毒性;4-DMAP价格昂贵,难以大规模开发 | [ |
| 磷酸化 | 酸酐法 | 磷酸(磷酸酐)、DMSO | 操作简单,设备要求低 | 放热反应易使多糖降解 | [ |
| 三氯氧磷法 | 三氯氧磷 | 反应时间快,操作简单,取代度高 | 更多有毒副产物,反应产生的刺激性气体 | [ | |
| 磷酸盐法 | 三聚磷酸钠、三偏磷酸钠 | 操作简单,不易发生多糖降解 | 反应活性低,取代度和收率低 | [ | |
| 五氧化二磷法 | 甲磺酸、P2O5 | 反应时间短 | 五氧化二磷酸性较强,易降解多糖 | [ | |
| 羧甲基化修饰 | 氯乙酸法 | 氯乙酸、20%NaOH、异丙醇 | 试剂易得、成本低、反应生成的物质毒性低或无毒 | 降低多糖的机械强度和结构稳定性 | [ |
| 硒化修饰 | 硒酸盐法 | 硝酸(或冰醋酸)、亚硒酸钠 | 成本低 | 反应时间长,步骤复杂 | [ |
| 氯氧化硒法 | 氯氧化硒 | 操作步骤简单 | SeOCl2易分解,反应会产生刺激性有毒气体 | [ |
图4 羧甲基化多糖的制备、表征及其对多氯联苯免疫毒性的干预作用[45]
Fig. 4 Preparation and characterization of carboxymethylated polysaccharides and their intervention on the immunotoxicity of polychlorinated biphenyls[45]
| [1] | JI X, HOU C, SHI M, et al.. An insight into the research concerning Panax ginseng C. A. Meyer polysaccharides: a review[J]. Food Rev. Int., 2022, 38(6): 1149-1165. |
| [2] | XIE J H, WANG Z J, SHEN M Y, et al.. Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus [J]. Food Hydrocoll., 2016, 53: 7-15. |
| [3] | HUANG H, HUANG G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides[J]. Chem. Biol. Drug Des., 2020, 96(5): 1209-1222. |
| [4] | ZHANG S, DING C, LIU X, et al.. Research progress on extraction, isolation, structural analysis and biological activity of polysaccharides from Panax genus [J/OL]. Molecules, 2023, 28(9): 3733[2025-03-15]. . |
| [5] | WANG J, BAO A, MENG X, et al.. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro [J]. Carbohydr. Polym., 2018, 184: 366-375. |
| [6] | JIANG J, MENG F Y, HE Z, et al.. Sulfated modification of Longan polysaccharide and its immunomodulatory and antitumor activity in vitro [J]. Int. J. Biol. Macromol., 2014, 67: 323-329. |
| [7] | XU Y, ZHANG X, YAN X H, et al.. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum [J]. Int. J. Biol. Macromol., 2019, 135: 706-716. |
| [8] | KHEDMAT L, IZADI A, MOFID V, et al.. Recent advances in extracting pectin by single and combined ultrasound techniques: a review of techno-functional and bioactive health-promoting aspects[J/OL]. Carbohydr. Polym., 2020, 229: 115474[2025-03-15]. . |
| [9] | CHEN F, HUANG G. Extraction, derivatization and antioxidant activity of bitter gourd polysaccharide[J]. Int. J. Biol. Macromol., 2019, 141: 14-20. |
| [10] | OTERO P, CARPENA M, GARCIA-OLIVEIRA P, et al.. Seaweed polysaccharides: emerging extraction technologies, chemical modifications and bioactive properties[J]. Crit. Rev. Food Sci. Nutr., 2023, 63(13): 1901-1929. |
| [11] | GAO J, HAN Y L, JIN Z Y, et al.. Protective effect of polysaccharides from Opuntia dillenii Haw. fruits on streptozotocin-induced diabetic rats[J]. Carbohydr. Polym., 2015, 124: 25-34. |
| [12] | VMATEOS M, RICHARDSON P G, SCHLAG R, et al.. Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase Ⅲ VISTA trial[J]. J. Clin. Oncol., 2010, 28(13): 2259-2266. |
| [13] | BAO H, SCHOI W, YOU S. Effect of sulfated modification on the molecular characteristics and biological activities of polysaccharides from Hypsizigus marmoreus [J]. Biosci. Biotechnol. Biochem., 2010, 74(7): 1408-1414. |
| [14] | CHEN X W, HUANG W B, SUN X Y, et al.. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth[J/OL]. Mater. Sci. Eng. C, 2021, 128: 112338[2025-03-15]. . |
| [15] | WANG Z, CAI T, HE X. Characterization, sulfated modification and bioactivity of a novel polysaccharide from Millettia dielsiana [J]. Int. J. Biol. Macromol., 2018, 117: 108-115. |
| [16] | WANG C, HE Y, TANG X, et al.. Sulfation, structural analysis, and anticoagulant bioactivity of ginger polysaccharides[J]. J. Food Sci., 2020, 85(8): 2427-2434. |
| [17] | PENG Y, ZHANG J, YANG H, et al.. Acetylation modification and antioxidant activity of polysaccharides from Agrocybe cylindracea [J]. J. Food Meas. Charact., 2022, 16(3): 1911-1919. |
| [18] | XIE J H, ZHANG F, WANG Z J, et al.. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves[J]. Carbohydr. Polym., 2015, 133: 596-604. |
| [19] | YANG Y, CHEN J, LEI L, et al.. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells[J]. Food Chem Toxicol, 2019, 125: 38-45. |
| [20] | XIA S, ZHAI Y, WANG X, et al.. Phosphorylation of polysaccharides: a review on the synthesis and bioactivities[J]. Int. J. Biol. Macromol., 2021, 184: 946-954. |
| [21] | XIONG X, HUANG G, HUANG H. The antioxidant activities of phosphorylated polysaccharide from native ginseng[J]. Int. J. Biol. Macromol., 2019, 126: 842-845. |
| [22] | LI H, FENG Y, SUN W, et al.. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice[J]. Int. J. Biol. Macromol., 2021, 170: 652-663. |
| [23] | CHEN F, HUANG G. Preparation and immunological activity of polysaccharides and their derivatives[J]. Int. J. Biol. Macromol., 2018, 112: 211-216. |
| [24] | LE-VINH B, LE N N, NAZIR I, et al.. Chitosan based micelle with Zeta potential changing property for effective mucosal drug delivery[J]. Int. J. Biol. Macromol., 2019, 133: 647-655. |
| [25] | WANG Y, HOU G, LI J, et al.. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp.[J]. Proc. Biochem., 2018, 72: 177-187. |
| [26] | SHI M J, WEI X, XU J, et al.. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: preparation and in vitro antioxidant activity[J]. Food Chem., 2017, 215: 76-83. |
| [27] | BAGHEL M, SAKURE K, GIRI T K, et al.. Carboxymethylated gums and derivatization: strategies and significance in drug delivery and tissue engineering[J/OL]. Pharm. Basel, 2023, 16(5): 776[2025-03-15]. . |
| [28] | SHAO C, ZHONG J, LIU J, et al.. Preparation, characterization and bioactivities of selenized polysaccharides from Lonicera caerulea L. fruits[J]. Int. J. Biol. Macromol., 2023, 225: 484-493. |
| [29] | GAO Z, CHEN J, QIU S, et al.. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity[J]. Carbohydr. Polym., 2016, 136: 560-569. |
| [30] | ZHAO B, ZHANG J, YAO J, et al.. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide[J]. Int. J. Biol. Macromol., 2013, 58: 320-328. |
| [31] | ZHANG S, ZHANG H, SHI L, et al.. Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya Japonica[J/OL]. Carbohydr. Polym., 2021, 273: 118496[2025-03-15]. . |
| [32] | ZHU S, HU J, LIU S, et al.. Synthesis of Se-polysaccharide mediated by selenium oxychloride: structure features and antiproliferative activity[J/OL]. Carbohydr. Polym., 2020, 246: 116545[2025-03-15]. . |
| [33] | MILETIĆ D, TURŁO J, PODSADNI P, et al.. Production of bioactive selenium enriched crude exopolysaccharides via selenourea and sodium selenite bioconversion using Trametes versicolor [J/OL]. Food Biosci., 2021, 42: 101046[2025-03-15]. . |
| [34] | 钟丘实,李莉,陈新丹,等.2株乳杆菌全发酵培养物及其组分的抗氧化能力分析[J].生物技术进展,2019,9(3):290-295. |
| ZHONG Q S, LI L, CHEN X D, et al.. Antioxidant ability analysis of all fermented cultures and their ingredients of two strains of Lactobacillus [J]. Curr. Biotechnol., 2019, 9(3): 290-295. | |
| [35] | GAO Z, ZHANG C, TIAN W, et al.. The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide(CAP)and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice[J]. Int. J. Biol. Macromol., 2017, 97: 46-54. |
| [36] | ZHANG X, LIU T, WANG X, et al.. Structural characterization, antioxidant activity and anti-inflammatory of the phosphorylated polysaccharide from Pholiota nameko [J/OL]. Nutr, 2022, 9: 976552[2025-03-15]. . |
| [37] | HUANG L, HUANG M, SHEN M, et al.. Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress[J]. Int. J. Biol. Macromol., 2019, 136: 1000-1006. |
| [38] | JIE Z, LIU J, SHU M, et al.. Detection strategies for superoxide anion: a review[J/OL]. Talanta, 2022, 236: 122892[2025-03-15]. . |
| [39] | CHEN L, HUANG G. Antioxidant activities of phosphorylated pumpkin polysaccharide[J]. Int. J. Biol. Macromol., 2019, 125: 256-261. |
| [40] | 董浩然, 姜宁, 陆欢, 等. 香菇多糖结构与功能研究进展[J]. 生物技术进展, 2024, 14(06):911-919. |
| DONG HR, JIANG N, LU H, et al Research progress on structure and function of lentinan[J]. Curr. Biotechnol.,2024, 14(06): 911-919. | |
| [41] | CHEN X, WU S, HUANG R, et al.. Immunomodulatory activity and mechanism of Chinese yam polysaccharide after sulfated modification[J/OL]. Ind. Crops Prod., 2023, 197: 116549[2025-03-15]. . |
| [42] | LIU X, XIE J, JIA S, et al.. Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7 [J]. Int. J. Biol. Macromol., 2017, 98: 576-581. |
| [43] | HAN Y, ZHANG Y, OUYANG K, et al.. Sulfated Cyclocarya paliurus polysaccharides improve immune function of immunosuppressed mice by modulating intestinal microbiota[J]. Int. J. Biol. Macromol., 2022, 212: 31-42. |
| [44] | HOU R, CHEN J, YUE C, et al.. Modification of lily polysaccharide by selenylation and the immune-enhancing activity[J]. Carbohydr. Polym., 2016, 142: 73-81. |
| [45] | ZHAO T, GUO Y, YAN S, et al.. Preparation, structure characterization of carboxymethylated Schisandra polysaccharides and their intervention in immunotoxicity to polychlorinated biphenyls[J]. Process. Biochem., 2022, 115: 30-41. |
| [46] | WANG J, BAO A, WANG Q, et al.. Sulfation can enhance antitumor activities of Artemisia sphaerocephala polysaccharide in vitro and vivo[J]. Int. J. Biol. Macromol., 2018, 107: 502-511. |
| [47] | WANG J, YANG X, BAO A, et al.. Microwave-assisted synthesis, structure and anti-tumor activity of selenized Artemisia sphaerocephala polysaccharide[J]. Int. J. Biol. Macromol., 2017, 95: 1108-1118. |
| [48] | DING J, JIA W, CUI Y, et al.. Anti-angiogenic effect of a chemically sulfated polysaccharide from Phellinus ribis by inhibiting VEGF/VEGFR pathway[J]. Int. J. Biol. Macromol., 2020, 154: 72-81. |
| [49] | JYOTSNA, VIJAYAKUMAR P, DHAS T S, et al.. Antiviral activity of sulfated polysaccharides from Sargassum ilicifolium against fish Betanodavirus infection[J]. Aquac. Int., 2021, 29(3): 1049-1067. |
| [50] | MING K, CHEN Y, YAO F, et al.. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide[J]. Int. J. Biol. Macromol., 2017, 94: 28-35. |
| [51] | SONG X, ZHANG Y, YIN Z, et al.. Antiviral effect of sulfated Chuanmingshen violaceum polysaccharide in chickens infected with virulent Newcastle disease virus[J]. Virology, 2015, 476: 316-322. |
| [52] | WANG L, JE J G, HUANG C, et al.. Anti-inflammatory effect of sulfated polysaccharides isolated from Codium fragile in vitro in RAW 264.7 macrophages and in vivo in zebrafish[J/OL]. Mar. Drugs, 2022, 20(6): 391[2025-03-15]. . |
| [53] | LI N, LIU X, HE X, et al.. Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava [J]. Carbohydr. Polym., 2017, 159: 195-206. |
| [54] | LIU H, LI F, LUO P. Effect of carboxymethylation and phosphorylation on the properties of polysaccharides from Sepia esculenta ink: antioxidation and anticoagulation in vitro [J/OL]. Mar. Drugs, 2019, 17(11): E626[2025-03-15]. . |
| [1] | 朱子墨, 刘麟然, 胡宇航, 李洁, 朱卫杰, 朱龙佼, 许文涛. 金耳活性成分研究与应用开发现状[J]. 生物技术进展, 2025, 15(5): 773-781. |
| [2] | 崔兆惠, 郭玲, 沈旭东, 林毅, 翟丽丽. 生物技术药物的免疫原性产生机制与控制策略[J]. 生物技术进展, 2025, 15(2): 212-219. |
| [3] | 武小琪, 宫文静, 李国玉, 李昂, 王继华, 崔迪. 微生物发酵中药的盲区与挑战:从菌种选择到质量控制[J]. 生物技术进展, 2025, 15(2): 201-211. |
| [4] | 董浩然, 姜宁, 陆欢, 付阳, 李巧珍, 于海龙. 香菇多糖结构与功能研究进展[J]. 生物技术进展, 2024, 14(6): 911-919. |
| [5] | 李昕阳, 杨阳, 刘栋, 刘宇光, 刘俊泽, 陈长宝, 王欢, 王淑敏. 基于菌丝生物量和胞外多糖产量的Simplicillium lanosoniveum液体发酵培养条件优化[J]. 生物技术进展, 2024, 14(6): 937-946. |
| [6] | 章寅, 李志明, 晁盛茜, 陈一帆, 吕贝贝. 矿质元素和植物激素对超群羊肚菌生长影响的研究[J]. 生物技术进展, 2024, 14(6): 947-951. |
| [7] | 潘少婷, 王博轩, 陈佳鑫, 蔡佳君, 林彦伸, 唐灵芝, 洪璇. 海洋真菌来源的聚酮类化合物研究进展[J]. 生物技术进展, 2024, 14(6): 993-1003. |
| [8] | 徐畅, 刘天一, 刘文佳, 张俐敏, 莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展[J]. 生物技术进展, 2024, 14(3): 368-376. |
| [9] | 陈雪娇, 余萍, 赵迪, 宋佳, 闵祥博. 基于斑马鱼模型及网络药理学研究植物乳植杆菌HCS03-001抗细菌炎症的作用[J]. 生物技术进展, 2024, 14(2): 295-303. |
| [10] | 陈巧莉, 黄杰, 陈森瑜, 潘少婷, 唐灵芝, 洪璇. 海洋链霉菌次级代谢产物研究进展[J]. 生物技术进展, 2023, 13(6): 844-852. |
| [11] | 赵薇萍, 齐艺惠, 李晶晶, 宋爽, 翟睿, 杜茜茜. 改良1,9-二甲基亚甲基蓝法定量检测岩藻多糖[J]. 生物技术进展, 2023, 13(5): 779-784. |
| [12] | 鲍佳生, 潘丙珍, 乔栖梧, 刘慧智, 潘素华. 酵母生物活性物质及其化妆品功效研究进展[J]. 生物技术进展, 2023, 13(3): 345-352. |
| [13] | 王竹,余善君,吉林佳,李咏婷,杨传雄,黄燕妮. 海南红树林淡紫拟青霉胞外多糖提取条件的优化[J]. 生物技术进展, 2021, 11(1): 105-110. |
| [14] | 邓春萌,王哑倩,吴美媛. 牛樟芝固态发酵菌丝体三萜及多糖提取工艺优化研究[J]. 生物技术进展, 2020, 10(3): 328-331. |
| [15] | 赵云霞,江魁,郭爱英,李景艳. 1型肺炎兔抗血清的制备及其在多糖含量检测中的质控研究[J]. 生物技术进展, 2019, 9(4): 416-421. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||