生物技术进展 ›› 2025, Vol. 15 ›› Issue (5): 791-797.DOI: 10.19586/j.2095-2341.2025.0068

• 进展评述 • 上一篇    下一篇

渗透应力调控下巨型单层囊泡膨胀-破裂的研究进展

赵铁亮1,2(), 蒋中英1, 石铭芸1()   

  1. 1.伊犁师范大学网络安全与信息技术学院,微纳电传感器技术与仿生器械实验室,新疆 伊宁 835000
    2.伊犁师范大学电子工程学院,新疆 伊宁 835000
  • 收稿日期:2025-06-04 接受日期:2025-08-18 出版日期:2025-09-25 发布日期:2025-11-11
  • 通讯作者: 石铭芸
  • 作者简介:赵铁亮 E-mail: 1977517964@qq.com
  • 基金资助:
    国家自然科学基金项目(22163011);伊犁师范大学科研项目(2022YSYB006);伊犁师范大学科研创新团队培育计划项目(CXZK2021011)

Research Progress on the Expansion and Rupture of Giant Unilamellar Vesicles Under Osmotic Stress

Tieliang ZHAO1,2(), Zhongying JIANG1, Mingyun SHI1()   

  1. 1.Key Laboratory of Micro-Nano Electronic Sensing Technology and Bionic Devices,School of Network Security and Information Technology,Yili Normal University,Xinjiang Yining 835000,China
    2.School of Electronic Engineering,Yili Normal University,Xinjiang Yining 835000,China
  • Received:2025-06-04 Accepted:2025-08-18 Online:2025-09-25 Published:2025-11-11
  • Contact: Mingyun SHI

摘要:

渗透应力是调节细胞膜形态和功能的关键物理因素,在细胞体积调节和膜通透性控制中起着至关重要的作用。目前,渗透应力作用下孔隙形成、相分离和膜组分之间的耦合机制尚不完全清楚,限制了膜动力学的深入探索及其在生物工程中的应用。综述了渗透应力调控下巨型单层囊泡(giant unilamellar vesicles,GUVs)的再组装动力学研究进展,讨论了膜相分离、膜张力积累、孔隙成核与扩展机制,揭示了膜张力与孔隙线张力动态平衡对孔隙周期性振荡的调控作用,阐明了脂质溶解等耗散过程对膜动力学的影响,为理解膜动力学调控机制提供了重要的理论支持,并为设计高效可控的药物递送系统奠定了基础。

关键词: 渗透应力, 巨型单层囊泡, 相分离, 孔隙, 振荡

Abstract:

Osmotic stress is a key physical factor regulating cell membrane morphology and function, playing a crucial role in cell volume regulation and membrane permeability control. Currently, the coupling mechanisms of pore formation, phase separation, and membrane components under osmotic stress are still not fully understood, limiting the in-depth exploration of membrane mechanics and its application in bioengineering. This article reviewed the research progress on the reassembly kinetics of giant unilamellar vesicles (GUVs) under osmotic stress regulation, discussed the mechanisms of membrane phase separation, membrane tension accumulation, pore nucleation and expansion, revealed the regulatory role of the dynamic balance between membrane tension and pore line tension on the periodic oscillation of pores, and elucidated the influence of dissipative processes such as lipid dissolution on membrane dynamics. The review provided important theoretical support for understanding the mechanisms regulating membrane dynamics and laid the foundation for the design of efficient and controllable drug delivery systems.

Key words: osmotic stress, giant unilamellar vesicles, phase separation, pore, oscillation

中图分类号: