| [1] |
SINGER S J, NICOLSON G L. The fluid mosaic model of the structure of cell membranes[J]. Science, 1972, 175(4023): 720-731.
|
| [2] |
LIBERA J, POMORSKI T, MÜLLER P, et al.. Influence of pH on phospholipid redistribution in human erythrocyte membrane[J]. Blood, 1997, 90(4): 1684-1693.
|
| [3] |
CHONG P L, TANG D, SUGAR I P. Exploration of physical principles underlying lipid regular distribution: effects of pressure, temperature, and radius of curvature on E/M dips in Pyrene-labeled PC/DMPC binary mixtures[J]. Biophys. J., 1994, 66(6): 2029-2038.
|
| [4] |
WALDE P, COSENTINO K, ENGEL H, et al.. Giant vesicles: preparations and applications[J]. Chembiochem, 2010, 11(7): 848-865.
|
| [5] |
PAULA S, VOLKOV A G, VAN HOEK A N, et al.. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness[J]. Biophys. J., 1996, 70(1): 339-348.
|
| [6] |
SAMBRE P D, HO J C S, PARIKH A N. Intravesicular solute delivery and surface area regulation in giant unilamellar vesicles driven by cycles of osmotic stresses[J]. J. Am. Chem. Soc., 2024, 146(5): 3250-3261.
|
| [7] |
ERTEL A, MARANGONI A G, MARSH J, et al.. Mechanical properties of vesicles. I. coordinated analysis of osmotic swelling and lysis[J]. Biophys. J., 1993, 64(2): 426-434.
|
| [8] |
FETTIPLACE R, HAYDON D A. Water permeability of lipid membranes[J]. Physiol. Rev., 1980, 60(2): 510-550.
|
| [9] |
RAWICZ W, SMITH B A, MCINTOSH T J, et al.. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids[J]. Biophys. J., 2008, 94(12): 4725-4736.
|
| [10] |
MIELE Y, HOLLÓ G, LAGZI I, et al.. Shape deformation, budding and division of giant vesicles and artificial cells: a review[J/OL]. Life, 2022, 12(6): 841[2025-08-20]. .
|
| [11] |
DHARAN R, BARNOY A, TSATURYAN A K, et al.. Intracellular pressure controls the propagation of tension in crumpled cell membranes[J/OL]. Nat. Commun., 2025, 16(1): 91[2025-08-20]. .
|
| [12] |
SINHA B, KÖSTER D, RUEZ R, et al.. Cells respond to mechanical stress by rapid disassembly of caveolae[J]. Cell, 2011, 144(3): 402-413.
|
| [13] |
MUI B L, CULLIS P R, EVANS E A, et al.. Osmotic properties of large unilamellar vesicles prepared by extrusion[J]. Biophys. J., 1993, 64(2): 443-453.
|
| [14] |
李舒嘉,施兴华.接枝高分子对纳米-生物界面黏附性能的调控[J].科学通报,2022,67(31):3633-3641.
|
|
LI S J, SHI X H. Regulation of nano-biological interface adhesion through grafted polymers[J]. Chin. Sci. Bull., 2022, 67(31): 3633-3641.
|
| [15] |
ULINE M J, SCHICK M, SZLEIFER I. Phase behavior of lipid bilayers under tension[J]. Biophys. J., 2012, 102(3): 517-522.
|
| [16] |
GIVLI S, GIANG H, BHATTACHARYA K. Stability of multicomponent biological membranes[J]. SIAM J. Appl. Math., 2012, 72(2): 489-511.
|
| [17] |
SANDRE O, MOREAUX L, BROCHARD-WYART F. Dynamics of transient pores in stretched vesicles[J]. Proc. Natl. Acad. Sci. USA, 1999, 96(19): 10591-10596.
|
| [18] |
EVANS E, SMITH B A. Kinetics of hole nucleation in biomembrane rupture[J/OL]. New J. Phys., 2011, 13: 095010[2025-08-20]. .
|
| [19] |
MKNOP J, MUKHERJEE S, JAWOREK M W, et al.. Life in multi-extreme environments: brines, osmotic and hydrostatic pressure-a physicochemical view[J]. Chem. Rev., 2023, 123(1): 73-104.
|
| [20] |
POPESCU D, POPESCU A G. The working of a pulsatory liposome[J]. J. Theor. Biol., 2008, 254(3): 515-519.
|
| [21] |
PETERLIN P, ARRIGLER V, HALEVA E, et al.. Law of corresponding states for osmotic swelling of vesicles[J]. Soft Matter, 2012, 8(7): 2185-2193.
|
| [22] |
周琪.渗透梯度协同自发曲率介导仿细胞膜的再组装[D].伊宁:伊犁师范大学,2023.
|
| [23] |
ZHOU Q, WANG P, MA B B, et al.. Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure[J/OL]. Chin. Phys. B, 2022, 31(9): 098701[2025-08-20]. .
|
| [24] |
OGLĘCKA K, RANGAMANI P, LIEDBERG B, et al.. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials[J/OL]. eLife, 2014, 3: e03695[2025-08-20]. .
|
| [25] |
CHABANON M, RANGAMANI P. Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant[J]. Biochim. Biophys. Acta Biomembr., 2018, 1860(10): 2032-2041.
|
| [26] |
RUZZANTE B, FRUZZETTI F, CATTANEO M, et al.. Harnessing osmotic shock for enhanced intracellular delivery of (nano)cargos[J/OL]. Int. J. Pharm., 2025, 669: 125008[2025-08-20]. .
|
| [27] |
BAI Y, HU N, DUAN X, et al.. Mechanisms and factors influencing the production of uniform-sized giant unilamellar vesicles by discrete lipid film arrays[J]. ACS Appl. Mater. Interf., 2024, 16(35): 45948-45955.
|
| [28] |
STEINKÜHLER J, KNORR R L, ZHAO Z, et al.. Controlled division of cell-sized vesicles by low densities of membrane-bound proteins[J/OL]. Nat. Commun., 2020, 11(1): 905[2025-08-20]. .
|
| [29] |
DREHER Y, JAHNKE K, BOBKOVA E, et al.. Division and regrowth of phase-separated giant unilamellar vesicles[J]. Angew. Chem. Int. Ed., 2021, 60(19): 10661-10669.
|
| [30] |
杨明明,王辉.偶联药物研究进展[J].生物技术进展,2025,15(3):388-395.
|
|
YANG M M, WANG H. Research progress on coupled drugs[J]. Curr. Biotechnol., 2025, 15(3): 388-395.
|
| [31] |
MENG W, HE C, HAO Y, et al.. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source[J]. Drug Deliv., 2020, 27(1): 585-598.
|
| [32] |
KOSLOV M M, MARKIN V S. A theory of osmotic lysis of lipid vesicles[J]. J. Theor. Biol., 1984, 109(1): 17-39.
|
| [33] |
ALAM SHIBLY S U, GHATAK C, SAYEM KARAL MABU, et al.. Experimental estimation of membrane tension induced by osmotic pressure[J]. Biophys. J., 2016, 111(10): 2190-2201.
|
| [34] |
WONGSIROJKUL N, SHIMOKAWA N, OPAPRAKASIT P, et al.. Osmotic-tension-induced membrane lateral organization[J]. Langmuir, 2020, 36(11): 2937-2945.
|
| [35] |
DOKTOROVA M, SYMONS J L, ZHANG X, et al.. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry[J]. Cell, 2025, 188(10): 2586-2602.
|
| [36] |
REAGLE T, XIE Y, LI Z, et al.. Methyl-β-cyclodextrin asymmetrically extracts phospholipid from bilayers, granting tunable control over differential stress in lipid vesicles[J]. Soft Matter, 2024, 20(21): 4291-4307.
|
| [37] |
FU H, HUANG J, VAN DER TOL J J B, et al.. Supramolecular polymers form tactoids through liquid-liquid phase separation[J]. Nature, 2024, 626(8001): 1011-1018.
|
| [38] |
HE X, AIZENBERG M, KUKSENOK O, et al.. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation[J]. Nature, 2012, 487(7406): 214-218.
|
| [39] |
LOSASSO V, WHSIAO Y, MARTELLI F, et al.. Modulation of antimicrobial peptide potency in stressed lipid bilayers[J/OL]. Phys. Rev. Lett., 2019, 122(20): 208103[2025-08-20]. .
|
| [40] |
SU W C, HO J C S, GETTEL D L, et al.. Kinetic control of shape deformations and membrane phase separation inside giant vesicles[J]. Nat. Chem., 2024, 16(1): 54-62.
|
| [41] |
MORALES-PENNINGSTON N F, WU J, FARKAS E R, et al.. GUV preparation and imaging: minimizing artifacts[J]. Biochim. Biophys. Acta, 2010, 1798(7): 1324-1332.
|
| [42] |
MAYORGA L S, MASONE D. The secret ballet inside multivesicular bodies[J]. ACS Nano, 2024, 18(24): 15651-15660.
|
| [43] |
PETERLIN P, ARRIGLER V. Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles[J]. Colloids Surf. B Biointerfaces, 2008, 64(1): 77-87.
|
| [44] |
BJØRNESTAD V A, LUND R. Pathways of membrane solubilization: a structural study of model lipid vesicles exposed to classical detergents[J]. Langmuir, 2023, 39(11): 3914-3933.
|
| [45] |
NOMURA F, NAGATA M, INABA T, et al.. Capabilities of liposomes for topological transformation[J]. Proc. Natl. Acad. Sci. USA, 2001, 98(5): 2340-2345.
|
| [46] |
HAMADA T, HAGIHARA H, MORITA M, et al.. Physicochemical profiling of surfactant-induced membrane dynamics in a cell-sized liposome[J]. J. Phys. Chem. Lett., 2012, 3(3): 430-435.
|
| [47] |
HAMADA T, HIRABAYASHI Y, OHTA T, et al.. Rhythmic pore dynamics in a shrinking lipid vesicle[J/OL]. Phys. Rev. E, 2009, 80(5): 051921[2025-08-20]. .
|
| [48] |
KARATEKIN E, SANDRE O, GUITOUNI H, et al.. Cascades of transient pores in giant vesicles: line tension and transport[J]. Biophys. J., 2003, 84(3): 1734-1749.
|
| [49] |
STARKE L J, ALLOLIO C, HUB J S. Pore formation in complex biological membranes: torn between evolutionary needs[J/OL]. bioRxiv, 2024, 592649[2025-08-20]. .
|
| [50] |
STARKE L J, ALLOLIO C, HUB J S. How pore formation in complex biological membranes is governed by lipid composition, mechanics, and lateral sorting[J/OL]. Proc. Natl. Acda. Sci. USA Nexus, 2025, 4(3): pgaf033[2025-08-20]. .
|
| [51] |
周琪,范荣,王平,等.跨膜浓度梯度对渗透压囊泡循环活性的调控[J].原子与分子物理学报,2023,40(3):157-161.
|
|
ZHOU Q, FAN R, WANG P, et al.. Regulation of cycling activity of osmotic pressure vesicles by the trans-membrane concentration gradient[J]. J. At. Mol. Phys., 2023, 40(3): 157-161.
|
| [52] |
HO J C S, RANGAMANI P, LIEDBERG B, et al.. Mixing water, transducing energy, and shaping membranes: autonomously self-regulating giant vesicles[J]. Langmuir, 2016, 32(9): 2151-2163.
|
| [53] |
LEOMIL F S C, ZOCCOLER M, DIMOVA R, et al.. PoET: automated approach for measuring pore edge tension in giant unilamellar vesicles[J/OL]. Bioinform. Adv., 2021, 1(1): vbab037[2025-08-20]. .
|
| [54] |
MALIK V K, PAK O S, FENG J. Pore dynamics of lipid vesicles under light-induced osmotic stress[J/OL]. Phys. Rev. Applied, 2022, 17(2): 024032[2025-08-20]. .
|
| [55] |
LIRA R B, LEOMIL F S C, MELO R J, et al.. To close or to collapse: the role of charges on membrane stability upon pore formation[J/OL]. Adv Sci, 2021, 8(11): e2004068[2025-08-20]. .
|
| [56] |
张凤.渗透应力和渗透梯度反转介导的生物膜的形态多样性研究[D].伊宁:伊犁师范大学,2024.
|
| [57] |
LIPOWSKY R. The many faces of membrane tension for biomembranes and vesicles[J]. Faraday Discuss., 2025, 259: 234-263.
|
| [58] |
SHIMOKAWA N, HAMADA T. Physical concept to explain the regulation of lipid membrane phase separation under isothermal conditions[J/OL]. Life, 2023, 13(5): 1105[2025-08-20]. .
|