| [1] |
KONOPLEVA M, POLLYEA D A, POTLURI J, et al.. Efficacy and biological correlates of response in a phase Ⅱ study of venetoclax monotherapy in patients with acute myelogenous leukemia[J]. Cancer Discov., 2016, 6(10): 1106-1117.
|
| [2] |
XIE G, IVICA N A, JIA B, et al.. CAR-T cells targeting a nucleophosmin neoepitope exhibit potent specific activity in mouse models of acute myeloid leukaemia[J]. Nat. Biomed. Eng., 2021, 5(5): 399-413.
|
| [3] |
DOSSA R G, CUNNINGHAM T, SOMMERMEYER D, et al.. Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse[J]. Blood, 2018, 131(1): 108-120.
|
| [4] |
CHRISTOPHER M J, PETTI A A, RETTIG M P, et al.. Immune escape of relapsed AML cells after allogeneic transplantation[J]. N. Engl. J. Med., 2018, 379(24): 2330-2341.
|
| [5] |
HU Q, SUN W, WANG J, et al.. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy[J]. Nat. Biomed. Eng., 2018, 2(11): 831-840.
|
| [6] |
MAGANTI H B, JRADE H, CAFARIELLO C, et al.. Targeting the MTF2-MDM2 axis sensitizes refractory acute myeloid leukemia to chemotherapy[J]. Cancer Discov., 2018, 8(11): 1376-1389.
|
| [7] |
SUDA K, KIM J, MURAKAMI I, et al.. Innate genetic evolution of lung cancers and spatial heterogeneity: analysis of treatment-Naïve lesions[J]. J. Thorac. Oncol., 2018, 13(10): 1496-1507.
|
| [8] |
PERKINS A, XU X, HIGGS D R, et al.. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants[J]. Blood, 2016, 127(15): 1856-1862.
|
| [9] |
LEY T J, MILLER C, DING L, et al.. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. N. Engl. J. Med., 2013, 368(22): 2059-2074.
|
| [10] |
CONSORTIUM T G. The GTEx Consortium atlas of genetic regulatory effects across human tissues[J]. Science, 2020, 369(6509): 1318-1330.
|
| [11] |
VIVIAN J, RAO A A, NOTHAFT F A, et al.. Toil enables reproducible, open source, big biomedical data analyses[J]. Nat. Biotechnol., 2017, 35(4): 314-316.
|
| [12] |
GOLDMAN M J, CRAFT B, HASTIE M, et al.. Visualizing and interpreting cancer genomics data via the Xena platform[J]. Nat. Biotechnol., 2020, 38(6): 675-678.
|
| [13] |
HAFERLACH T, KOHLMANN A, WIECZOREK L, et al.. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group[J]. J. Clin. Oncol., 2010, 28(15): 2529-2537.
|
| [14] |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J/OL]. Genome Biol., 2014, 15(12): 550[2025-08-07]. .
|
| [15] |
CARBON S, DOUGLASS E, GOOD B M. The gene ontology resource: enriching a gold mine[J]. Nucleic Acids Res., 2021, 49(D1): 325-334.
|
| [16] |
YU G, WANG L G, HAN Y, et al.. Clusterprofiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
|
| [17] |
SHANNON P, MARKIEL A, OZIER O, et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res., 2003, 13(11): 2498-2504.
|
| [18] |
GEELEHER P, COX N, HUANG R S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels[J/OL]. PLoS ONE, 2014, 9(9): e107468[2025-08-01]. .
|
| [19] |
DING C, SHAN Z, LI M, et al.. Characterization of the fatty acid metabolism in colorectal cancer to guide clinical therapy[J]. Mol. Ther. Oncolytics, 2021, 20: 532-544.
|
| [20] |
HAYASHI Y, GOYAMA S, LIU X, et al.. Antitumor immunity augments the therapeutic effects of p53 activation on acute myeloid leukemia[J/OL]. Nat. Commun., 2019, 10(1): 4869[2025-08-01]. .
|
| [21] |
DINARDO C D, TIONG I S, QUAGLIERI A, et al.. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML[J]. Blood, 2020, 135(11): 791-803.
|
| [22] |
XIA T, KONNO H, AHN J, et al.. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis[J]. Cell Rep., 2016, 14(2): 282-297.
|
| [23] |
GILLINDER K R, ILSLEY M D, NÉBOR D, et al.. Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability[J]. Nucleic Acids Res., 2017, 45(3): 1130-1143.
|
| [24] |
KULCZYNSKA K, BIEKER J J, SIATECKA M. A krüppel-like factor 1 (KLF1) mutation associated with severe congenital dyserythropoietic Anemia alters its DNA-binding specificity[J/OL]. Mol. Cell. Biol., 2020, 40(5): e00444-19[2025-08-01]..
|
| [25] |
BINDER S, LUCIANO M, HOREJS-HOECK J. The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators[J]. Cytokine Growth Factor Rev., 2018, 43: 8-15.
|
| [26] |
NECHIPORUK T, KURTZ S E, NIKOLOVA O, et al.. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells[J]. Cancer Discov., 2019, 9(7): 910-925.
|
| [27] |
HOU P, WU C, WANG Y, et al.. A genome-wide CRISPR screen identifies genes critical for resistance to FLT3 inhibitor AC220[J]. Cancer Res., 2017, 77(16): 4402-4413.
|
| [28] |
DRENBERG C D, SHELAT A, DANG J, et al.. A high-throughput screen indicates gemcitabine and JAK inhibitors may be useful for treating pediatric AML[J/OL]. Nat. Commun., 2019, 10(1): 2189[2025-08-07]. .
|
| [29] |
YADAV M, SINGH A K, KUMAR H, et al.. Epidermal growth factor receptor inhibitor cancer drug gefitinib modulates cell growth and differentiation of acute myeloid leukemia cells via histamine receptors[J]. Biochim. Biophys. Acta, 2016, 1860(10): 2178-2190.
|
| [30] |
SOUCY T A, SMITH P G, MILHOLLEN M A, et al.. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer[J]. Nature, 2009, 458(7239): 732-736.
|
| [31] |
MCCUBREY J A, STEELMAN L S, ABRAMS S L, et al.. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy[J]. Leukemia, 2008, 22(4): 708-722.
|
| [32] |
SIGAUD R, RÖSCH L, GATZWEILER C, et al.. The first-in-class ERK inhibitor ulixertinib shows promising activity in mitogen-activated protein kinase (MAPK)-driven pediatric low-grade glioma models[J]. Neuro. Oncol., 2023, 25(3): 566-579.
|
| [33] |
YONG J X, CAI S Q, ZENG Z L. Targeting NAD+metabolism: dual roles in cancer treatment[J/OL]. Front. Immunol. 2023, 14: 1269896[2025-08-21]. .
|