| [1] |
MUNEKAGE Y N, EYMERY F, RUMEAU D, et al.. Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C4 Flaveria species[J]. Plant Cell Physiol., 2010, 51(4): 664-668.
|
| [2] |
MILLER-FLEMING L, OLIN-SANDOVAL V, CAMPBELL K, et al.. Remaining mysteries of molecular biology: the role of polyamines in the cell[J]. J. Mol. Biol., 2015, 427(21): 3389-3406.
|
| [3] |
MADEO F, EISENBERG T, PIETROCOLA F, et al.. Spermidine in health and disease[J/OL]. Science, 2018, 359(6374): eaan2788[2025-08-20]. .
|
| [4] |
RO D K, PARADISE E M, OUELLET M, et al.. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440(7086): 940-943.
|
| [5] |
LUO X, REITER M A, D'ESPAUX L, et al.. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126.
|
| [6] |
CARRICHE G M, ALMEIDA L, STÜVE P, et al.. Regulating T-cell differentiation through the polyamine spermidine[J]. J. Allergy Clin. Immunol., 2021, 147(1): 335-348.
|
| [7] |
PIETROCOLA F, CASTOLDI F, KEPP O, et al.. Spermidine reduces cancer-related mortality in humans[J]. Autophagy, 2019, 15(2): 362-365.
|
| [8] |
SCHROEDER S, HOFER S J, ZIMMERMANN A, et al.. Dietary spermidine improves cognitive function[J/OL]. Cell Rep., 2021, 35(2): 108985[2025-08-20]. .
|
| [9] |
EISENBERG T, ABDELLATIF M, ZIMMERMANN A, et al.. Dietary spermidine for lowering high blood pressure[J]. Autophagy, 2017, 13(4): 767-769.
|
| [10] |
PEGG A E. Functions of polyamines in mammals[J]. J. Biol. Chem., 2016, 291(29): 14904-14912.
|
| [11] |
ALCÁZAR R, ALTABELLA T, MARCO F, et al.. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance[J]. Planta, 2010, 231(6): 1237-1249.
|
| [12] |
TABOR C W, TABOR H. Polyamines in microorganisms[J]. Microbiol. Rev., 1985, 49(1): 81-99.
|
| [13] |
LIANG X, DENG H, BAI Y, et al.. Highly efficient biosynthesis of spermidine from L-homoserine and putrescine using an engineered Escherichia coli with NADPH self-sufficient system[J]. Appl. Microbiol. Biotechnol., 2022, 106(17): 5479-5493.
|
| [14] |
XI H, NIE X, GAO F, et al.. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine[J/OL]. Sci. Adv., 2023, 9(43): eadj9075[2025-08-20]. .
|
| [15] |
RAGIONE F D, PEGG A E. Purification and characterization of spermidine/spermine N1-acetyltransferase from rat liver[J]. Biochemistry, 1982, 21(24): 6152-6158.
|
| [16] |
YOON S O, LEE Y S, LEE S H, et al.. Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes[J]. Biochim. Biophys. Acta, 2000, 1475(1): 17-26.
|
| [17] |
LEE M J, HUANG C Y, SUN Y J, et al.. Cloning and characterization of spermidine synthase and its implication in polyamine biosynthesis in Helicobacter pylori strain 26695[J]. Protein Expr. Purif., 2005, 43(2): 140-148.
|
| [18] |
WU H, MIN J, IKEGUCHI Y, et al.. Structure and mechanism of spermidine synthases[J]. Biochemistry, 2007, 46(28): 8331-8339.
|
| [19] |
LIU Y, GUO X, WANG X, et al.. A two-enzyme cascade system for the bio-production of spermidine from putrescine[J/OL]. Mol. Catal., 2021, 504: 111439[2025-08-20]. .
|
| [20] |
RUAN L, LI L, ZOU D, et al.. Metabolic engineering of Bacillus amyloliquefaciens for enhanced production of S-adenosylmethionine by coupling of an engineered S-adenosylmethionine pathway and the tricarboxylic acid cycle[J/OL]. Biotechnol. Biof.Biop., 2019, 12: 211[2025-08-20]. .
|
| [21] |
GOU L, LIU D, FAN T P, et al.. Efficient spermidine production using a multi-enzyme cascade system utilizing methionine adenosyltransferase from Lactobacillus fermentum with reduced product inhibition and acidic pH preference[J]. J. Biotechnol., 2025, 399: 141-152.
|
| [22] |
KIM S K, JIN Y S, GCHOI I, et al.. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents[J]. Metab. Eng., 2015, 29: 46-55.
|
| [23] |
QIN J, KRIVORUCHKO A, JI B, et al.. Engineering yeast metabolism for the discovery and production of polyamines and polyamine analogues[J]. Nat. Catal., 2021, 4(6): 498-509.
|
| [24] |
HANFREY C C, PEARSON B M, HAZELDINE S, et al.. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota[J]. J. Biol. Chem., 2011, 286(50): 43301-43312.
|
| [25] |
TAIT G H. A new pathway for the biosynthesis of spermidine[J]. Biochem. Soc. Trans., 1976, 4(4): 610-612.
|
| [26] |
NAKAO H, SHINODA S, YAMAMOTO S. Purification and some properties of carboxynorspermidine synthase participating in a novel biosynthetic pathway for norspermidine in Vibrio alginolyticus [J]. J. Gen. Microbiol., 1991, 137(7): 1737-1742.
|
| [27] |
LIANG X, DENG H, XIONG T, et al.. Overexpression and biochemical characterization of a carboxyspermidine dehydrogenase from Agrobacterium fabrum str. C58 and its application to carboxyspermidine production[J]. J. Sci. Food Agric., 2022, 102(9): 3858-3868.
|
| [28] |
LI L, LI N, WANG X, et al.. Metabolic engineering combined with enzyme engineering for overproduction of ectoine in Escherichia coli [J/OL]. Bioresour. Technol., 2023, 390: 129862[2025-08-20]. .
|
| [29] |
FENG P, SUN B, BI H, et al.. Developing thermosensitive metabolic regulation strategies in the fermentation process of Saccharomyces cerevisiae to enhance α-bisabolene production[J]. ACS Synth. Biol., 2025, 14(4): 1129-1141.
|
| [30] |
WANG M, WANG H, GAO C, et al.. Efficient production of protocatechuic acid using systems engineering of Escherichia coli [J]. Metab. Eng., 2024, 82: 134-146.
|
| [31] |
WANG J, DU M, WANG X, et al.. Highly efficient bio-production of putrescine from L-arginine with arginase and L-ornithine decarboxylase in engineered Escherichia coli [J/OL]. Bioresour. Technol., 2024, 413: 131471[2025-08-20]. .
|
| [32] |
THONGBHUBATE K, IRIE K, SAKAI Y, et al.. Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12[J/OL]. AMB Express, 2021, 11(1): 168[2025-08-20]. .
|
| [33] |
KASHIWAGI K, SHIBUYA S, TOMITORI H, et al.. Excretion and uptake of putrescine by the PotE protein in Escherichia coli [J]. J. Biol. Chem., 1997, 272(10): 6318-6323.
|
| [34] |
ZHAO W, SHI F, HANG B, et al.. The improvement of SAM accumulation by integrating the endogenous methionine adenosyltransferase gene SAM2 in genome of the industrial Saccharomyces cerevisiae strain[J]. Appl. Biochem. Biotechnol., 2016, 178(6): 1263-1272.
|
| [35] |
LI L, ZOU D, JI A, et al.. Multilevel metabolic engineering of Bacillus amyloliquefaciens for production of the platform chemical putrescine from sustainable biomass hydrolysates[J]. ACS Sustainable Chem. Eng., 2020, 8(5): 2147-2157.
|
| [36] |
WANG Q, LIU X, ZHANG H, et al.. Cytochrome P450 enzyme design by constraining the catalytic pocket in a diffusion model[J/OL]. Research, 2024, 7: 0413[2025-08-20]. .
|
| [37] |
KOTB M, GELLER A M. Methionine adenosyltransferase: structure and function[J]. Pharmacol. Ther., 1993, 59(2): 125-143.
|