生物技术进展 ›› 2023, Vol. 13 ›› Issue (3): 383-389.DOI: 10.19586/j.2095-2341.2022.0196
收稿日期:
2022-11-21
接受日期:
2023-03-10
出版日期:
2023-05-25
发布日期:
2023-06-12
通讯作者:
王苹
作者简介:
白亮 E-mail:bailiang20101@163.com;
基金资助:
Liang BAI1,2(), He HUANG1, Ping WANG2(
)
Received:
2022-11-21
Accepted:
2023-03-10
Online:
2023-05-25
Published:
2023-06-12
Contact:
Ping WANG
摘要:
代谢性疾病(metabolic disease,MD)一直以来是健康领域面临的重大挑战,其发生发展与宿主的代谢和免疫存在密切联系。近年来基于肠道菌群的治疗策略层出不穷,特别是利用合成生物学改造的微生物,对于代谢性疾病的预防和治疗展现出良好的应用潜力。通过对微生物基因路线和代谢途径进行合理设计和改造,可以实现目标物质的稳定输出和精准投递,进而治疗疾病。着重综述了合成生物学在代谢性疾病预防和治疗中的研究进展,以期为改善和治疗代谢性疾病提供新的思路和方法。
中图分类号:
白亮, 黄鹤, 王苹. 合成生物学在治疗代谢性疾病中的研究进展[J]. 生物技术进展, 2023, 13(3): 383-389.
Liang BAI, He HUANG, Ping WANG. Advances in Synthetic Biology on the Treatment of Metabolic Diseases[J]. Current Biotechnology, 2023, 13(3): 383-389.
适应症 | 靶标物质 | 作用机制 | 参考文献 |
---|---|---|---|
酒精性脂肪肝 | IL-22 | 上调肠道Reg3g表达,减少细菌移位至肝脏,缓解肝损伤 | [ |
高血氨症 | 苯丙氨酸 | 构建Phe代谢途径,降低血氨浓度 | [ |
肥胖 | GLP-1 | 促进胰岛素的分泌,改善血脂代谢,调节肠道菌群组成 | [ |
丁酸 | 改善物质代谢,调节肠道菌群组成 | [ | |
泛连接蛋白 | 与Gβγ亚基结合后,通过β3AR刺激而被激活,调节细胞产热 | [ | |
糖尿 | 筛选抑制剂 | 筛选β细胞分化抑制剂 | [ |
BSH和IL-10 | 响应乳糖浓度信号,调节肠道菌群组成 | [ | |
阿那白滞素 | 改善物质代谢,抵抗炎症 | [ | |
乳糖不耐受 | 乳糖 | 响应乳糖浓度信号,调节肠道菌群组成 | [ |
庞贝病 | α-葡萄糖苷酶 | 构建编码α-葡萄糖苷酶,降解糖原浓度 | [ |
粘多糖症 | 蛋白聚糖 | 构建编码人α-N-乙酰氨基葡萄糖苷酶,降解蛋白聚糖浓度 | [ |
表1 当前已进入临床阶段用于治疗代谢性疾病的工程菌
Table 1 Currently engineering bacteria for treatment of metabolic diseases in clinical stage
适应症 | 靶标物质 | 作用机制 | 参考文献 |
---|---|---|---|
酒精性脂肪肝 | IL-22 | 上调肠道Reg3g表达,减少细菌移位至肝脏,缓解肝损伤 | [ |
高血氨症 | 苯丙氨酸 | 构建Phe代谢途径,降低血氨浓度 | [ |
肥胖 | GLP-1 | 促进胰岛素的分泌,改善血脂代谢,调节肠道菌群组成 | [ |
丁酸 | 改善物质代谢,调节肠道菌群组成 | [ | |
泛连接蛋白 | 与Gβγ亚基结合后,通过β3AR刺激而被激活,调节细胞产热 | [ | |
糖尿 | 筛选抑制剂 | 筛选β细胞分化抑制剂 | [ |
BSH和IL-10 | 响应乳糖浓度信号,调节肠道菌群组成 | [ | |
阿那白滞素 | 改善物质代谢,抵抗炎症 | [ | |
乳糖不耐受 | 乳糖 | 响应乳糖浓度信号,调节肠道菌群组成 | [ |
庞贝病 | α-葡萄糖苷酶 | 构建编码α-葡萄糖苷酶,降解糖原浓度 | [ |
粘多糖症 | 蛋白聚糖 | 构建编码人α-N-乙酰氨基葡萄糖苷酶,降解蛋白聚糖浓度 | [ |
1 | LI Y, ZHAO L, YU D, et al.. Metabolic dyndrome prevalence and its risk factors among adults in China: a nationally representative cross-sectional study[J/OL]. PLoS ONE, 2018, 13(6): e0199293[2018-06-19]. . |
2 | SAKLAYEN M G. The global epidemic of the metabolic syndrome[J/OL]. Curr. Hypertens. Rep., 2018, 20(2): 12[2018-02-26]. . |
3 | FARR O M, MANTZOROS C S. Treating prediabetes in the obese: are GLP-1 analogues the answer?[J]. Lancet, 2017, 389(10077): 1371-1372. |
4 | BOHULA S, SCIRICA B M, INZUCCHI S E, et al.. Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA TIMI 61): a randomised, placebo-controlled trial[J]. Lancet, 2018, 392(10161): 2269-2279. |
5 | DABKE K, HENDRICK G, DEVKOTA S. The gut microbiome and metabolic syndrome[J]. J. Clin. Invest., 2019, 129(10): 4050-4057. |
6 | MACKE E, TASIEMDKI, MASSOL F, et al.. Life history and eco-evolutionary dynamics in light of the gut microbiota[J]. OIKOS, 2017, 126(4): 508-531. |
7 | 刘梓嘉,姜雪,仪杨,等. 氢气与肠道菌群的关系研究进展[J].生物技术进展,2022,12(6):847-852. |
8 | VALDES A M, WALTER J. Role of the gut microbiota in nutrition and health[J/OL]. Brit. Med. J., 2018, 361: k2179[2018-06-13]. . |
9 | DORON S, SNYDMAN D R. Risk and safety of probiotics[J]. Clin. Infect Dis., 2015, 60(S2): 129-134. |
10 | TAPIOVAARA L, LEHTORANTA L, POUSSA T, et al.. Absence of adverse events in healthy individuals using probiotics-analysis of six randomised studies by one study group[J]. Benef. Microbes., 2016, 7(2): 161-169. |
11 | BERMUDZ-HUMARAN L G, LANGELLA P. Live bacterial biotherapeutics in the clinic[J]. Nat. Biotechnol., 2018, 36(9): 816-818. |
12 | 权春菊,郑忠亮. CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J].生物技术进展,2021,11(4):518-525. |
13 | BOER J R, BEISEL C L, NAIR N U. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications[J]. Annu. Rev. Biomed.Eng., 2018, 20: 277-300. |
14 | CERTAIN L K, WAY J C, PEZOEN M J, et al.. Using engineered bacteria to characterize infection dynamics and antibiotic effects in vivo[J]. Cell Host Microbe., 2017, 22: 263-268. |
15 | FERENCZI S, SOLYMOSI N, HORVATH I, et al.. Efficient treatment of a preclinical inflammatory bowel disease model with engineered bacteria[J]. Mol. Ther., 2020, 20: 218-226. |
16 | LI J, RIAZ R M S, SHAO D, et al.. Strategies to increase the efficacy of using gut microbiota for the modulation of obesity[J]. Nat. Rev. Immunol., 2017: 17: 219-232. |
17 | ZHAO J, LI M Y, CHEN Q F, et al.. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J/OL]. Nat. Commun., 2022, 13(1): 3432[2022-06-14]. . |
18 | HENDRIKX T, DUAN Y, WANG Y H, et al.. Bacteria engineered to produce IL22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice[J]. Gut, 2019, 68(8): 1504-1515. |
19 | CHUNG Y, RYU Y, AN B C, et al.. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota[J/OL]. Microbiome, 2021, 9(1): 122[2021-05-26]. . |
20 | ISABELLA V M, HA B N, CASTILLO M J, et al.. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[J]. Nat. Biotechnol., 2018, 36(9): 857-864. |
21 | HOU Y, HOSSAIN G S, LI J H, et al.. Two-step production of phenylpyruvic acid from L-phenylalanine by growing and resting cells of engineered Escherichia coli: process optimization and kinetics modeling[J/OL]. PLoS ONE, 2016, 11(11): e0166457[2016-11-16]. . |
22 | PANTALEONE D P, GELLER A M, TAYLORP P, et al.. Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids[J]. J. Mol. Catal. B Enzym., 2001, 11(4-6): 795-803. |
23 | KURTZ C B, MILLET Y A, PUURUNEN M K, et al.. An engineered E . coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans[J/OL]. Sci. Transl. Med., 2019, 11(475): eaau7975[2019-01-16]. . |
24 | WANG L F, CHEN T T, WANG H, et al.. Engineered bacteria of MG1363- pMG36e-GLP-1 attenuated obesityinduced by high fat diet in mice[J/OL]. Front. Cell. Infect. Mi., 2021, 11: 595575[2021-02-25]. . |
25 | HWANG I Y, KOH E, WONG A, et al.. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models[J/OL]. Nat. Commun, 2017, 8: 15028[2017-04-11]. . |
26 | KOH A, DE-VADER F, KOVATCHEVA-DATCHARY P, et al.. From detary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. |
27 | OCHOA-SANCHEZ R M, OLIVEIRA M, TREMBLAY M, et al.. Genetically engineered E. coli nissle attenuates hyperammonemia and prevents memory impairment in bile-duct ligated rats[J]. Liver Int., 2021, 41(5): 1020-1032. |
28 | BAI L, GAO M X, CHENG X M, et al.. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice[J/OL]. Microb. Cell Fact., 2020, 19: 94[2020-04-25]. . |
29 | MSCOTT B, GUTIERREZ-VAZQUEZ C, SANMARCO L M, et al.. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease[J]. Nat. Med., 2021, 27(7): 1212-1222. |
30 | TIAN P Y, HUANG Z X, ZHAO X X, et al.. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1[J]. Appl. Microbiol. Biotechnol., 2018, 102(17): 7565-7575. |
31 | MA J, LI C Y, WANG J R, et al.. Genetically engineered Escherichia coli Nissle 1917 secreting GLP-1 analog exhibits potential antiobesity effect in high-fat diet-induced obesity mice[J]. Obesity, 2020, 28(2): 315-322. |
32 | WANG L N, CHENG X M, BAI L, et al.. Positive interventional effect of engineered butyrate-producing bacteria on metabolic disorders and intestinal flora disruption in obese mice[J/OL]. Microbiol. Spectr., 2022, 10(2): e0114721[2022-04-27]. . |
33 | SENTHIVINAYAGAM S, SERBULEA V, UPCHURCH C M, et al.. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels[J/OL]. Mol. Metab., 2020, 44: 101130[2020-11-25]. . |
34 | ATKINsSON M A, VON HERRATH M, POWERS A C, et al.. Current concepts on the pathogenesis of type 1 diabetes-considerations for attempts to prevent and reverse the disease[J]. Diabetes Care, 2015, 38(6): 979-988. |
35 | ABDELALIM E M. Modeling different types of diabetes using human pluripotent stem cells[J]. Cell. Mol. Life Sci., 2021, 78: 2459-2483. |
36 | VETHE H, BJORLYKKE Y, GHILA L M, et al.. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells[J/OL]. Sci. Rep., 2017, 7(1): 4780[2017-07-06]. . |
37 | JINNG N H, BINTEJASMEN J, LIM C S, et al.. HNF4A haploinsufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells[J]. iScience, 2019, 16: 192-205. |
38 | ROSADA-O, IVIERI E A, ANDERSON K, KENTY J H, et al.. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells[J/OL]. Nat. Commun., 2019, 10(1): 1464[2019-04-01]. . |
39 | RUSSELL B J, BROWN S D, SIGUENZA N, et al.. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes[J]. Cell, 2022, 185(17): 3263-3277. |
40 | SUMPTER K M, ADHIKARI S, GRISHMAN E K, et al.. Preliminary studies related to anti-interleukin-1 β therapy in children with newly diagnosed type 1 diabetes[J]. Pediatr. Diabet., 2011, 12(7): 656-667. |
41 | KRON J, CRAWFORD T, MIHALICK V, et al.. Interleukin-1 blockade in cardiac sarcoidosis: study design of the multimodality assessment of granulomas in cardiac sarcoidosis: anakinra randomized trial (MAGiC-ART)[J/OL]. J. Transl. Med., 2021, 19(1): 460[2021-11-08]. . |
42 | CHENG M Y, CHENG Z Y, YU Y Y, et al.. An engineered genetic circuit for lactose intolerance alleviation[J/OL]. BMC Biol., 2021, 19: 137[2021-07-05]. . |
43 | SMITH B K, COLLINS S W, CONON T J, et al.. Phase Ⅰ/Ⅱ trial of adeno-associated virus-mediated alphaglucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes[J]. Hum. Gene Ther., 2013, 24: 630-640. |
44 | CORTI M, LIBERATI C, SMITH B K, et al.. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease[J]. Hum. Gene Ther. Clin. Dev., 2017, 28(4): 208-218. |
45 | TUSKE S, YU T, HORDEAUX J, et al.. Development of a novel gene therapy for pompe disease: engineered acid alpha-glucosidase transgene for improved expression and muscle targeting[J]. Mol. Ther., 2002, 5(1): 571-578. |
46 | COLELLA P, SELLIER P, VERDERA H C, et al.. AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate pompe mice[J]. Mol. Ther., 2018, 12: 85-101. |
47 | HU Z, LAN Y, ZHU D, et al.. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells[J/OL]. Biomed. Res. Int., 2014, 2014: 612832[2014-07-20]. . |
48 | XU L, WANG J, LIU Y L, et al.. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia[J]. New Engl. J. Med., 2019, 381: 1240-1247. |
49 | OU L, PRZYBILLA M J, AHLAT O, et al.. A highly efficacious PS gene editing system corrects metabolic and neurological complications of mucopolysaccharidosis type Ⅰ[J]. Mol. Ther., 2020, 28(6): 1442-1454. |
50 | SAWAMOTO K, CHEN H H, ALMECIGA-DIAZ C J, et al.. Gene therapy for mucopolysaccharidoses[J]. Mol. Genet. Metab., 2018, 123: 59-68. |
51 | TARDIEU M, ZERAH M, GOUGENON M L, et al.. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial[J]. Lancet Neurol., 2017, 16(9): 712-720. |
[1] | 舒玲, 包明威. 胃肠道在肥胖相关性高血压中的作用及研究进展[J]. 生物技术进展, 2025, 15(3): 426-431. |
[2] | 孔蒙蒙, 金静静, 卢鹏, 顾梦丽, 陈千思, 曹培健, 张剑锋, 陶界锰. 高产纤维素酶工程菌株产酶条件优化[J]. 生物技术进展, 2024, 14(6): 1032-1041. |
[3] | 刘昱, 李甜, 魏勇军, 汪滢, 邹根. 合成生物学在食用菌新赛道中的展望[J]. 生物技术进展, 2024, 14(6): 886-891. |
[4] | 俞国伟, 薛洪宝, 杨俊松, 刘长青, 方强. 植物精油与挥发性成分抗肥胖研究进展[J]. 生物技术进展, 2024, 14(2): 196-204. |
[5] | 孔蒙蒙, 卢鹏, 陈千思, 乔学义, 陈善义, 金静静, 郑雪坳, 曹培健, 陶界锰. 产纤维素酶工程菌株的构建及其在醇化烟叶中的应用[J]. 生物技术进展, 2024, 14(2): 263-270. |
[6] | 徐婷, 沈佳豪, 赵康, 黄鹭, 董恩惠, 曾可心, 卞新为, 季明辉, 许勤. 基于瘤胃球菌微生物群丰度构建疾病类型预测的肠道菌群标签[J]. 生物技术进展, 2024, 14(2): 323-330. |
[7] | 曹海涛, 朱静, 马云鹏, 崔兴华. 机器学习在肠道菌群宿主表型预测中的应用[J]. 生物技术进展, 2023, 13(5): 671-680. |
[8] | 曹海涛, 朱静, 曾海波, 刘彦辰. 基于加权平均的肠道菌群特征筛选和疾病预测模型研究[J]. 生物技术进展, 2023, 13(5): 798-806. |
[9] | 赵俊魁, 卢永忠. 蓝藻细胞工厂的研究进展[J]. 生物技术进展, 2023, 13(2): 174-180. |
[10] | 陈洁, 黄永康, 王希. 合成生物学在化工新材料领域的应用及展望[J]. 生物技术进展, 2023, 13(1): 39-45. |
[11] | 刘梓嘉, 姜雪, 仪杨, 王濛, 马晨, 宋怡菲, 谢飞. 氢气与肠道菌群的关系研究进展[J]. 生物技术进展, 2022, 12(6): 847-852. |
[12] | 郭婧雅, 张萍, 赵雨菡, 李梦杰, 黄昆仑, 仝涛. 肥胖诱导的骨骼肌萎缩机制研究进展[J]. 生物技术进展, 2022, 12(6): 861-868. |
[13] | 王濛, 仪杨, 孙梦婷, 刘梓嘉, 姜雪, 马晨, 宋怡菲, 谢飞. 富氢水和富氢生理盐水生物医学研究进展——动物实验[J]. 生物技术进展, 2022, 12(3): 332-343. |
[14] | 丁宁, 许叶, 曾玮思, 胡彦周, 洪凌宇, 黄昆仑, 贺晓云. 重组人乳铁蛋白和重组人溶菌酶对小鼠溃疡性结肠炎的改善作用研究[J]. 生物技术进展, 2022, 12(1): 120-128. |
[15] | 赵鹏翔, 谢飞, 刘梦昱, ADZAVON Yao Mawulikplimi, 马雪梅. 氢气生物医学研究进展[J]. 生物技术进展, 2021, 11(4): 503-517. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||