Current Biotechnology ›› 2022, Vol. 12 ›› Issue (2): 189-197.DOI: 10.19586/j.2095-2341.2021.0170
• Reviews • Previous Articles Next Articles
Yunyan FEI(
), Jun YANG, Dedao JING, Tianzi LIN, Chuang LI, Huafei QIAN, Shengyuan ZENG, Huaxin HAN, Hongbing GONG(
)
Received:2021-10-20
Accepted:2021-11-12
Online:2022-03-25
Published:2022-03-25
Contact:
Hongbing GONG
费云燕(
), 杨军, 景德道, 林添资, 李闯, 钱华飞, 曾生元, 韩华新, 龚红兵(
)
通讯作者:
龚红兵
作者简介:费云燕 E-mail:suiyiyixinyisi@163.com;
基金资助:CLC Number:
Yunyan FEI, Jun YANG, Dedao JING, Tianzi LIN, Chuang LI, Huafei QIAN, Shengyuan ZENG, Huaxin HAN, Hongbing GONG. Research and Application Progress of CRISPR/Cas Technology in Herbicide⁃resistant Crops Breeding[J]. Current Biotechnology, 2022, 12(2): 189-197.
费云燕, 杨军, 景德道, 林添资, 李闯, 钱华飞, 曾生元, 韩华新, 龚红兵. CRISPR/Cas技术在抗除草剂作物育种中的研究与应用进展[J]. 生物技术进展, 2022, 12(2): 189-197.
| 物种 | 靶基因 | 编辑工具 | 修饰方式 | 参考文献 |
|---|---|---|---|---|
| 水稻 | ALS | CRISPR/Cas9 | G628W | [ |
| ALS | CRISPR/Cas9(CRISPR/Cpf)+供体DNA | W548L、S627I | [ | |
| ALS | CBE | A96V | [ | |
| ALS | CBE | P17F | [ | |
| ALS | 引导编辑 | W548L、P171S | [ | |
| ALS | 引导编辑 | S624I | [ | |
| ALS | 引导编辑 | S627N | [ | |
| ALS | 引导编辑 | W542L、S621I | [ | |
| EPSPS | CRISPR/Cas9+供体DNA | T102I、P106S | [ | |
| EPSPS | CBE | T102I | [ | |
| ACCase | ABE | C2186R、I1879V、W2125S | [ | |
| ACCase | 引导编辑 | D2176G | [ | |
| AFB4 | CRISPR/Cas9 | 基因敲除 | [ | |
| SF3B1 | CRISPR/Cas9 | K1050E、H1048Q | [ | |
| TubA2 | ABE | M268T | [ | |
| 西红柿 | ALS | CRISPR/Cas9+供体DNA | P186A | [ |
| ALS | CBE | P186A | [ | |
| 玉米 | ALS | CRISPR/Cas9+供体DNA | P165S | [ |
| ALS | CBE | P165S、P165A、P165L | [ | |
| 小麦 | ALS | CBE | P174F、P174S、P174A | [ |
| ACCase | CBE | A1992V | [ | |
| 大豆 | ALS | CRISPR/Cas9+供体DNA | P178S | [ |
| ALS | CBE | P182S、P182T | [ | |
| 油菜 | ALS | CBE | P197F、P197S、P173S、P173L | [ |
| 西瓜 | ALS | CBE | P190S、P190L | [ |
| 烟草 | ALS | CRISPR/Cas9+供体DNA | W568L、S647T | [ |
| ALS | CBE | P194S、P194L | [ |
Table 1 Application of CRISPR/Cas system in herbicide?resistant crops breeding
| 物种 | 靶基因 | 编辑工具 | 修饰方式 | 参考文献 |
|---|---|---|---|---|
| 水稻 | ALS | CRISPR/Cas9 | G628W | [ |
| ALS | CRISPR/Cas9(CRISPR/Cpf)+供体DNA | W548L、S627I | [ | |
| ALS | CBE | A96V | [ | |
| ALS | CBE | P17F | [ | |
| ALS | 引导编辑 | W548L、P171S | [ | |
| ALS | 引导编辑 | S624I | [ | |
| ALS | 引导编辑 | S627N | [ | |
| ALS | 引导编辑 | W542L、S621I | [ | |
| EPSPS | CRISPR/Cas9+供体DNA | T102I、P106S | [ | |
| EPSPS | CBE | T102I | [ | |
| ACCase | ABE | C2186R、I1879V、W2125S | [ | |
| ACCase | 引导编辑 | D2176G | [ | |
| AFB4 | CRISPR/Cas9 | 基因敲除 | [ | |
| SF3B1 | CRISPR/Cas9 | K1050E、H1048Q | [ | |
| TubA2 | ABE | M268T | [ | |
| 西红柿 | ALS | CRISPR/Cas9+供体DNA | P186A | [ |
| ALS | CBE | P186A | [ | |
| 玉米 | ALS | CRISPR/Cas9+供体DNA | P165S | [ |
| ALS | CBE | P165S、P165A、P165L | [ | |
| 小麦 | ALS | CBE | P174F、P174S、P174A | [ |
| ACCase | CBE | A1992V | [ | |
| 大豆 | ALS | CRISPR/Cas9+供体DNA | P178S | [ |
| ALS | CBE | P182S、P182T | [ | |
| 油菜 | ALS | CBE | P197F、P197S、P173S、P173L | [ |
| 西瓜 | ALS | CBE | P190S、P190L | [ |
| 烟草 | ALS | CRISPR/Cas9+供体DNA | W568L、S647T | [ |
| ALS | CBE | P194S、P194L | [ |
| 1 | HAN Y J, KIM J I. Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants [J]. Plant Biotechnol. Rep., 2019, 13(5): 447-457. |
| 2 | ZISKA L H. Climate change and the herbicide paradigm: Visiting the future [J/OL]. Agronomy, 2020, 10(12): 1953[2021-06-07]. . |
| 3 | RODENBURG J, JOHNSON D. Weed management in rice-based cropping systems in Africa [J]. Adv. Agron., 2009, 103: 149-218. |
| 4 | HUSSAIN A, DING X, ALARIQI M, et al.. Herbicide resistance: another hot agronomic trait for plant genome editing [J/OL]. Plants, 2021, 10(4): 621[2021-06-07]. . |
| 5 | 李燕敏,祁显涛,刘昌林,等.除草剂抗性农作物育种研究进展[J].作物杂志,2018,33(2):1-6. |
| 6 | 于东洋,王凤梧,融晓萍,等.利用CRISPR/Cas9 技术对燕麦乙酰辅酶A羧化酶 (ACCase)基因的编辑[J].分子植物育种,2019,17(19):6356-6362. |
| 7 | GREEN J M. Current state of herbicides in herbicideresistant crops [J]. Pest. Manag. Sci., 2014, 70(9): 1351-1357. |
| 8 | DLYE C, JASIENIUK M, CORRE V. Deciphering the evolution of herbicide resistance in weeds [J]. Trends Genet., 2013, 29(11): 649-658. |
| 9 | KUDSK P, STREIBIG J C. Herbicides-a two-edged sword[J]. Weed Res., 2003, 43(2): 90-102. |
| 10 | DURAND-MORAT A, NALLEY L L. Economic benefits of controlling red rice: a case study of the United States [J/OL]. Agronomy, 2019, 9(8): 422[2021-06-07]. . |
| 11 | BALDWIN F L. Transgenic crops: a view from the US Extension Service [J]. Pest Manag. Sci., 2000, 56(7): 584-585. |
| 12 | CANADIAN B A N. Where in the world are GM crops and foods? [R]. Ottawa: Canadian Biotechnology Action Network, 2015: 1-30. |
| 13 | 薛满德,龙艳,裴新梧.基因编辑技术及其在作物育种中的应用与安全管理[J].中国农业科技导报,2018,20(9):12-22. |
| 14 | BHATTACHARYA A, PARKHI V, CHAR B. CRISPR/Cas genome editing: strategies and potential for crop improvement [M]. Berlin: Springer Nature, 2020: 3-4. |
| 15 | JIANG F, DOUDNA J. CRISPR-Cas9 structures and mechanisms [J]. Annu. Rev. Biophys., 2017, 46: 505-529. |
| 16 | 刘欣欣,李赫,卜庆云,等.CRISPR/Cas9 系统在水稻分子育种中的应用[J].土壤与作物,2021,10(1):18-26. |
| 17 | 李希陶,刘耀光.基因组编辑技术在水稻功能基因组和遗传改良中的应用[J].生命科学,2016,28(10):1243-1249. |
| 18 | ZHANG D, ZHANG Z, UNVER T, et al.. CRISPR/Cas: A powerful tool for gene function study and crop improvement [J]. J. Adv. Res., 2020, 29: 207-221. |
| 19 | SABZEHZARI M, ZEINALI M, NAGHAVI M R. CRISPR-based metabolic editing: next-generation metabolic engineering in plants [J/OL]. Gene, 2020, 759: 144993[2021-06-07]. . |
| 20 | 陈易雨,王志平,倪汉文,等.CRISPR/Cas9 单碱基编辑技术创制抗除草剂拟南芥种质[J].中国科学(生命科学),2017,47(11):1196-1199. |
| 21 | MA L, LIANG Z. CRISPR technology for abiotic stress resistant crop breeding [J]. Plant Growth Regul., 2021, 94: 115-129. |
| 22 | 秦瑞英,魏鹏程.Prime editing引导植物基因组精确编辑新局面[J].遗传,2020,42(6):519-523. |
| 23 | 罗银,刘峰.CRISPR/Cas9技术在作物中的研究及应用进展[J].作物研究,2020,34(6):588-596. |
| 24 | CHENG H, HAO M, DING B, et al.. Base editing with high efficiency in allotetraploid oilseed rape by A3A‐PBE system [J]. Plant Biotechnol. J., 2021, 19(1): 87-97. |
| 25 | GUO F, HUANG Y, QI P, et al.. Functional analysis of auxin receptor OsTIR1/OsAFB family members in rice grain yield, tillering, plant height, root system, germination, and auxinic herbicide resistance [J]. New Phytol., 2021, 229(5): 2676-2692. |
| 26 | KUANG Y, LI S, REN B, et al.. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Mol. Plant, 2020, 13(4): 565-572. |
| 27 | WANG F, XU Y, LI W, et al.. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9-mediated gene editing [J]. Crop J., 2021, 9(2): 305-312. |
| 28 | BUTT H, EID A, MOMIN A A, et al.. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors [J/OL]. Genome Biol., 2019, 20(1): 73[2021-06-07]. . |
| 29 | HUANG T K, ARMSTRONG B, SCHINDELE P, et al.. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a [J]. Plant Biotechnol. J., 2021, 19(7): 1314-1324. |
| 30 | DANILO B, PERROT L, MARA K, et al.. Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato [J]. Plant Cell Rep., 2019, 38(4): 459-462. |
| 31 | SVITASHEV S, YOUNG J K, SCHWARTZ C, et al.. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA [J]. Plant Physiol., 2015, 169(2): 931-945. |
| 32 | LI Z, LIU Z B, XING A, et al.. Cas9-guide RNA directed genome editing in soybean [J]. Plant Physiol., 2015, 169(2): 960-970. |
| 33 | SUN Y, ZHANG X, WU C, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol. Plant, 2016, 9(4): 628-631. |
| 34 | LI S, LI J, ZHANG J, et al.. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice [J]. J. Exp. Bot., 2018, 69(20): 4715-4721. |
| 35 | LI J, MENG X, ZONG Y, et al.. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J/OL]. Nat. Plants, 2016, 2(10): 16139[2021-06-07]. . |
| 36 | SVITASHEV S, SCHWARTZ C, LENDERTS B, et al.. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes [J/OL]. Nat. Commun., 2016, 7(1): 13274[2021-06-07]. . |
| 37 | ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice [J]. Plant Physiol., 2016, 170(2): 667-677. |
| 38 | MISHRA R, JOSHI R K, ZHAO K. Base editing in crops: current advances, limitations and future implications [J]. Plant Biotechnol. J., 2020, 18(1): 20-31. |
| 39 | SHIMATANI Z, FUJIKURA U, ISHII H, et al.. Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice [J]. Data Brief, 2018, 20: 1325-1331. |
| 40 | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al.. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion [J]. Nat. Biotechnol., 2017, 35(5): 441-443. |
| 41 | ENDO M, MIKAMI M, ENDO A, et al.. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM [J]. Nat. Plants, 2019, 5(1): 14-17. |
| 42 | KANG B C, YUN J Y, KIM S T, et al.. Precision genome engineering through adenine base editing in plants [J]. Nat. Plants, 2018, 4(7): 427-431. |
| 43 | KANG B C, WOO J W, KIM S T, et al.. Guidelines for C to T base editing in plants: base-editing window, guide RNA length, and efficient promoter [J]. Plant Biotechnol. Rep., 2019, 13(5): 533-541. |
| 44 | ZONG Y, SONG Q, LI C, et al.. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A [J]. Nat. Biotechnol., 2018, 36(10): 950-953. |
| 45 | LI Y, ZHU J, WU H, et al.. Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize [J]. Crop J., 2020, 8(3): 449-456. |
| 46 | TIAN S, JIANG L, CUI X, et al.. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing [J]. Plant Cell Rep., 2018, 37(9): 1353-1356. |
| 47 | VEILLET F, PERROT L, CHAUVIN L, et al.. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor [J/OL]. Int. J. Mol. Sci., 2019, 20(2): 402[2021-06-07]. . |
| 48 | ZHANG R, LIU J, CHAI Z, et al.. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing [J]. Nat. Plants, 2019, 5(5): 480-485. |
| 49 | WU J, CHEN C, XIAN G, et al.. Engineering herbicide‐resistant oilseed rape by CRISPR/Cas9‐mediated cytosine base-editing [J]. Plant Biotechnol. J., 2020, 18(9): 1857-1859. |
| 50 | LIU X, QIN R, LI J, et al.. A CRISPR-Cas9-mediated domain‐specific base‐editing screen enables functional assessment of ACCase variants in rice [J]. Plant Biotechnol. J., 2020, 18(9): 1845-1847. |
| 51 | LI C, ZONG Y, WANG Y, et al.. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion [J]. Genome Biol., 2018, 19(1): 1-9. |
| 52 | LIU L, KUANG Y, YAN F, et al.. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2 [J]. Plant Biotechnol. J., 2021, 19(1): 5-7. |
| 53 | HUANG T K, PUCHTA H. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering [J]. Transgenic Res., 2021, 30: 529-549. |
| 54 | TANG X, SRETENOVIC S, REN Q, et al.. Plant prime editors enable precise gene editing in rice cells [J]. Mol. Plant, 2020, 13(5): 667-670. |
| 55 | LI H, LI J, CHEN J, et al.. Precise modifications of both exogenous and endogenous genes in rice by prime editing [J]. Mol. Plant, 2020, 13(5): 671-674. |
| 56 | XU W, ZHANG C, YANG Y, et al.. Versatile nucleotides substitution in plant using an improved prime editing system [J]. Mol. Plant, 2020, 13(5): 675-678. |
| 57 | HUA K, JIANG Y, TAO X, et al.. Precision genome engineering in rice using prime editing system[J]. Plant Biotechnol. J., 2020, 18(11): 2167-2169. |
| 58 | BUTT H, RAO G S, SEDEEK K, et al.. Engineering herbicide resistance via prime editing in rice [J]. Plant Biotechnol. J., 2020, 18(12): 2370-2372. |
| 59 | LU Y, TIAN Y, SHEN R, et al.. Precise genome modification in tomato using an improved prime editing system [J]. Plant Biotechnol. J., 2021, 19(3): 415-417. |
| 60 | JIANG Y Y, CHAI Y P, LU M H, et al.. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize [J/OL]. Genome Biol., 2020, 21: 257[2021-06-07]. . |
| 61 | 吴言,郝雅荞,韦璇,等.新一代精准基因编辑工具 CRISPR/Cas9的技术优势与应用局限生[J].生物技术通报,2018,34(5):1-8. |
| 62 | HU Z, ZHANG T, ROMBAUT D, et al.. Genome editing-based engineering of CESA3 dual cellulose-inhibitor-resistant plants [J]. Plant Physiol., 2019, 180(2): 827-836. |
| 63 | CHU Z, CHEN J, NYPORKO A, et al.. Novel α-tubulin mutations conferring resistance to dinitroaniline herbicides in Lolium rigidum [J/OL]. Front. Plant Sci., 2018, 9: 97[2021-06-10]. . |
| 64 | 吴云雨,肖宁,余玲,等.我国抗除草剂水稻种质创制研究进展[J].植物遗传资源学报,2021,22(4):890-899. |
| 65 | 刘肖静,王旭静,王志兴.CRISPR-Cas 系统在植物中的研究进展与监管政策[J].生物技术进展,2021,11(1):1-8. |
| [1] | Jingjing YANG, Kewei NING, Mingjuan WANG, Binghui TANG, Junling CAI, Aiping LIU, Xiaodong XIE. The Evaluation Method for Drought Resistance During the Germination Period of Upland Cotton and Screening of High-quality Germplasm Resources in the Shihezi Reclamation Area [J]. Current Biotechnology, 2025, 15(3): 486-494. |
| [2] | Dinghong JIA, Xun LIU, Bo WANG, Xiaowei WANG, Tong LI, Lijing HUANG. Development and Application of Abundance SNP Markers for Auricularia heimuer [J]. Current Biotechnology, 2024, 14(6): 892-901. |
| [3] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. |
| [4] | Hao JIANG, Hesheng YANG, Bo WANG, Zaiquan CHENG, Huanzhi MENG, Jiyun ZHOU, Yun ZHANG, Suqin XIAO, Li LIU, Fuyou YIN, Qiaofang ZHONG, Jinlu LI, Dunyu ZHANG, Ling CHEN. Exploration and Utilization of the Excellent Characteristics and Favorable Genes of Yunnan Common Wild Rice(Oryza rufipogon Griff.) in the Past 40 Years [J]. Current Biotechnology, 2024, 14(5): 724-737. |
| [5] | Zhihui XIAN, Weihua LONG, Xiaoyu TAN, Maolong HU, Huiming PU. Research Progress on the Genetics and Varieties Breeding of High-oleic-acid Rapeseed [J]. Current Biotechnology, 2022, 12(5): 641-646. |
| [6] | Wenling ZHAI, Caiyun LIU, Ying LIU, Bisheng FU, Jin CAI, Wei GUO, Qiaofeng ZHANG, Jizhong WU. Phenotypic and Molecular Identification of New Wheat Germplasm Resistant to Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 581-589. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||