Current Biotechnology ›› 2022, Vol. 12 ›› Issue (1): 50-56.DOI: 10.19586/j.2095-2341.2021.0016
• Reviews • Previous Articles Next Articles
Linlin WANG1(
), Zhenliang SUN2(
)
Received:2021-01-30
Accepted:2021-06-16
Online:2022-01-25
Published:2022-01-26
Contact:
Zhenliang SUN
通讯作者:
孙振亮
作者简介:王林琳 E-mail:202562413@st.usst.edu.cn;
基金资助:CLC Number:
Linlin WANG, Zhenliang SUN. Research Progress of Amino Acid Transporters in Tumor Metabolism[J]. Current Biotechnology, 2022, 12(1): 50-56.
王林琳, 孙振亮. 氨基酸转运体在肿瘤代谢中的研究进展[J]. 生物技术进展, 2022, 12(1): 50-56.
| 1 | BODE B. Recent molecular advances in mammalian glutamine transport[J]. J. Nutr., 2001, 131(9): 2475-2485. |
| 2 | GANAPATHY V, THANGARAJU M, PRASAD P D. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond[J]. Pharmacol. Ther., 2009, 121(1): 29-40. |
| 3 | ZOU Z, TAO T, LI H, et al.. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges[J/OL]. Cell Biosci., 2020, 10: 31[2021-11-01]. . |
| 4 | KANAI Y, CLEMENCON B, SIMONIN A, et al.. The SLC1 high-affinity glutamate and neutral amino acid transporter family [J]. Mol. Aspects Med., 2013, 34(2-3): 108-120. |
| 5 | GARIBSINGH R A, OTTE N J, NDARU E, et al.. Homology modeling informs ligand discovery for the glutamine transporter ASCT2[J/OL]. Front. Chem., 2018, 6:279[2021-11-03]. . |
| 6 | SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J/OL]. Front. Oncol., 2017, 7: 306[2021-11-01]. . |
| 7 | SCALISE M, POCHINI L, CONSOLE L, et al.. The human SLC1A5 ASCT2 amino acid transporter: from function to structure and role in cell biology [J/OL]. Front. Cell Dev. Biol., 2018, 6: 96[2021-11-03]. . |
| 8 | BOTT A J, SHEN J, TONELLI C, et al.. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism[J]. Cell Rep., 2019, 29(5): 1287-1298. |
| 9 | LI L, MENG Y, LI Z, et al.. Discovery and development of small molecule modulators targeting glutamine metabolism [J]. Eur. J. Med. Chem., 2019, 163: 215-242. |
| 10 | KATT W P, CERIONE R A. Glutaminase regulation in cancer cells: a druggable chain of events [J]. Drug Discov. Today, 2014, 19(4): 450-457. |
| 11 | LIU Y, ZHAO T, LI Z, et al.. The role of ASCT2 in cancer: a review[J]. Eur. J. Pharmacol., 2018, 837: 81-87. |
| 12 | HASSANEIN M, QIAN J, HOEKSEMA M D, et al.. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer[J]. Int. J. Cancer, 2015, 137(7): 1587-1597. |
| 13 | AVISSAR N E, SAX H C, TOIA L. In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and Rho-dependent[J]. Dig. Dis. Sci., 2008, 53(8): 2113-2125. |
| 14 | LUO Y, LI W, LING Z, et al.. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells[J]. Cancer Med., 2020, 9(10): 3489-3499. |
| 15 | WANG L, LIU Y, ZHAO T L, et al.. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer[J]. Phytomedicine, 2019, 57: 117-128. |
| 16 | PALII S S, THIAVILLE M M, PAN Y X, et al.. Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) system A transporter gene[J]. Biochem. J., 2006, 395(3): 517-527. |
| 17 | BROER A, RAHIMI F, BROER S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells[J]. J. Biol. Chem., 2016, 291(25): 13194-13205. |
| 18 | MOROTTI M, BRIDGES E, VALLI A, et al.. Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(25): 12452-12461. |
| 19 | SAMLUK L, CZEREDYS M, SKOWRONEK K, et al.. Protein kinase C regulates amino acid transporter ATB(0,+)[J]. Biochem. Biophys. Res. Commun., 2012, 422(1): 64-69. |
| 20 | ROGALA-KOZIARSKA K, SAMLUK L, NALECZ K A. Amino acid transporter SLC6A14 depends on heat shock protein HSP90 in trafficking to the cell surface[J]. Biochim. Biophys. Acta. Mol. Cell Res., 2019, 1866(10): 1544-1555. |
| 21 | KARUNAKARAN S, RAMACHANDRAN S, COOTHANKANDASWAMY V, et al.. SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer [J]. J. Biol. Chem., 2011, 286(36): 31830-31838. |
| 22 | LUO Q, YANG B, TAO W, et al.. (ATB0,+) transporter-mediated targeting delivery to human lung cancer cells via aspartate-modified docetaxel-loading stealth liposomes[J]. Biomater Sci., 2017, 5(2): 295-304. |
| 23 | NALECZ K A. Amino acid transporter SLC6A14 (ATB0,+)-a target in combined anti-cancer therapy [J/OL]. Front. Cell Dev. Biol., 2020, 8: 594464[2021-11-01]. . |
| 24 | KOU L, HUANG H, LIN X, et al. Endocytosis of (ATB0,+) (SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer [J]. Expert Opin. Drug Deliv., 2020, 17(3): 395-405. |
| 25 | CHAFAI A, FROMM M F, KONIG J, et al.. The prognostic biomarker L-homoarginine is a substrate of the cationic amino acid transporters CAT1, CAT2A and CAT2B[J/OL]. Sci. Rep., 2017, 7(1): 4767[2021-11-01]. . |
| 26 | HATZOGLOU M, FERNANDEZ J, YAMAN I, et al.. Regulation of cationic amino acid transport: the story of the CAT-1 transporter[J]. Annu. Rev. Nutr., 2004, 24: 377-399. |
| 27 | ABDELMAGID S A, RICKARD J A, MCDONALD W J, et al.. CAT-1-mediated arginine uptake and regulation of nitric oxide synthases for the survival of human breast cancer cell lines [J]. J. Cell Biochem., 2011, 112(4): 1084-1092. |
| 28 | PENG J B, ZHUANG L, BERGER U V, et al.. CaT1 expression correlates with tumor grade in prostate cancer[J]. Biochem. Biophys. Res. Commun., 2001, 282(3): 729-734. |
| 29 | COBURN L A, SINGH K, ASIM M, et al.. Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis[J]. Oncogene, 2019, 38(7): 1067-1079. |
| 30 | SUN T, BI F, LIU Z, et al.. SLC7A2 serves as a potential biomarker and therapeutic target for ovarian cancer[J]. AGING, 2020, 12(13): 13281-13296. |
| 31 | KESAVARDHANA S, KANNEGANTI T D. Targeting apoptosis inhibition to activate antitumor immunity[J]. Trends Immunol., 2019, 40(12): 1073-1075. |
| 32 | NAVA C, RUPP J, BOISSEL J P, et al.. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders[J]. Amino Acids, 2015, 47(12): 2647-2658. |
| 33 | LOWMAN X H, HANSE E A, YANG Y, et al.. p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake[J]. Cell Rep., 2019, 26(11): 3051-3060. |
| 34 | JANUCHOWSKI R, ZAWIERUCHA P, ANDRZEJEWSKA M, et al.. Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines[J]. Biomed. Pharm., 2013, 67(3): 240-245. |
| 35 | ZHAO Y, WANG L, PAN J. The role of L-type amino acid transporter 1 in human tumors[J]. Intract. Rare Dis. Res., 2015, 4(4): 165-169. |
| 36 | KOSHI H, SANO T, HANDA T, et al.. L-type amino acid transporter-1 and CD98 expression in bone and soft tissue tumors [J]. Pathol. Int., 2015, 65(9): 460-467. |
| 37 | QUAN L, OHGAKI R, HARA S, et al.. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation[J/OL]. J. Exp. Clin. Cancer Res., 2020, 39(1): 266[2021-11-01]. . |
| 38 | DANN S G, RYSKIN M, BARSOTTI A M, et al.. Reciprocal regulation of amino acid import and epigenetic state through Lat1 and EZH2 [J]. EMBO J., 2015, 34(13): 1773-1785. |
| 39 | HAFLIGER P, GRAFF J, RUBIN M, et al.. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model[J/OL]. J. Exp. Clin. Cancer Res., 2018, 37(1): 234[2021-11-01]. . |
| 40 | FENG M, XIONG G, CAO Z, et al.. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer[J/OL]. J. Exp. Clin. Cancer Res., 2018, 37(1): 274[2021-11-01]. . |
| 41 | ARENSMAN M D, YANG X S, LEAHY D M, et al.. Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(19): 9533-9542. |
| 42 | LIU L, LIU R, LIU Y, et al.. Cystine-glutamate antiporter xCT as a therapeutic target for cancer[J]. Cell Biochem. Funct., 2020, 39(2): 174-179. |
| 43 | Sehm T, Rauh M, Wiendieck K, et al.. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis[J]. Oncotarget, 2016, 7(46): 74630-74647. |
| 44 | HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674. |
| 45 | SCALISE M, CONSOLE L, ROVELLA F, et al.. Membrane transporters for amino acids as players of cancer metabolic rewiring[J/OL]. Cells, 2020, 9(9): 2028[2021-11-01]. . |
| 46 | CHEN Q, ZHOU J, CHEN Z, et al.. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a fenton nanoagent for enhanced chemodynamic therapy[J]. ACS Appl. Mater. Interf., 2019, 11(34): 30551-30565. |
| 47 | TANABE A, KIMURA K, TAZAWA H, et al.. Functional analysis of CD44 variants and xCT in canine tumours[J]. Vet. Med. Sci., 2020, 7(2): 577-585. |
| 48 | NAKAYA M, XIAO Y, ZHOU X, et al.. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation[J]. Immunity, 2014, 40(5): 692-705. |
| 49 | BROER A, GAUTHIER-COLES G, RAHIMI F, et al.. Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells[J]. J. Biol. Chem., 2019, 294(11): 4012-4026. |
| [1] | Lulu ZHAO, Tian HONG, Yiran HAO, Erning CHEN, Jingwen LI, Meihong DU. Research Progress of Immunomagnetic Separation Technology in Detection of Circulating Tumor Cell [J]. Current Biotechnology, 2025, 15(4): 606-614. |
| [2] | Lina ZHU, Zhiling SONG. Autophagy and Apoptosis: Interactions and Their Role in Disease [J]. Current Biotechnology, 2025, 15(4): 622-626. |
| [3] | Xiaoyi ZHAI, Haiyue ZHANG, Wenjia GUO, Xiaogang DONG. Research Progress of Cancer-associated Fibroblasts in Breast Cancer [J]. Current Biotechnology, 2025, 15(4): 636-644. |
| [4] | Xiaoya LIU, Shuomin ZHANG, Peng ZHENG, Rui MA, Chaojun ZHANG. Role and Mechanisms of DBNDD1 in Colorectal Cancer Development [J]. Current Biotechnology, 2025, 15(4): 726-734. |
| [5] | Geyemuri WU, Jianqiang WU. Anti-tumor Effects of Gentian Violet [J]. Current Biotechnology, 2025, 15(2): 226-233. |
| [6] | Kaijing SUN, Xinze LIU, Xin JIN, Xue YANG, Qi WANG, Yu LI, Changbao CHEN, Xilin WAN. Research Progress on Antitumor Active Constituents and Their Mechanism of Action of Traditional Chinese Medicine Sanghuangporus baumii [J]. Current Biotechnology, 2024, 14(6): 929-936. |
| [7] | Beibei LI, Jianqiang WU. Research Progress of Fas-mediated Non-apoptotic Signaling in Tumor Cells [J]. Current Biotechnology, 2024, 14(3): 406-412. |
| [8] | Yan ZENG, Hengcheng ZHU, Kang YANG. The Mechanism of DNASE1L3 in Renal Cell Carcinoma [J]. Current Biotechnology, 2024, 14(3): 486-491. |
| [9] | Yeerkenbieke BUERLAN, Wenjia GUO, Xiaogang DONG. Advances on the Function of POSTN in Tumor Microenvironment [J]. Current Biotechnology, 2024, 14(2): 205-210. |
| [10] | Lili SUN, Yuemaierabola ANWAIER, Fuzhong LIU, Yeerkenbieke BUERLAN, Ye DILINAER, Wenjia GUO. Construction of Prognostic Prediction Model of Breast Cancer Based on Tumor-associated Fibroblast Genes and Analysis of Immune Infiltration [J]. Current Biotechnology, 2024, 14(2): 312-322. |
| [11] | Pengxiao ZHANG, Nian HU. The Research Progress on Action Mechanism of Melanoma Immunotherapy [J]. Current Biotechnology, 2023, 13(6): 900-906. |
| [12] | Yuemaierabola ANWAIER, Lili SUN, Yeerkenbieke BUERLAN, Wenjia GUO. Advances on the Role of Piezo1 in Cancer [J]. Current Biotechnology, 2023, 13(5): 712-717. |
| [13] | Wenbo MA, Yiqun PAN, Qun WANG, Zhuang MA, Minglian WANG, Yishu YANG. Preliminary Study on the Application of Graphene-coated Iron Nitride Magnetic Beads to Capture Lung Cancer Circulating Tumor Cells [J]. Current Biotechnology, 2023, 13(4): 628-636. |
| [14] | Yongchao LI, Zhao YANG. Status and Countermeasures of Bispecific Antibody Drugs [J]. Current Biotechnology, 2023, 13(3): 353-358. |
| [15] | Ying TANG, Jianqiang WU. Anti-tumor Effects of Phenylethanoid Glycosides Deprived from Cistanche deserticola [J]. Current Biotechnology, 2023, 13(3): 399-405. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||