Current Biotechnology ›› 2025, Vol. 15 ›› Issue (1): 1-10.DOI: 10.19586/j.2095-2341.2024.0121
• Reviews • Next Articles
Wenxuan PU1(
), Xi DAI2, Jiani YUE3, Xiuxia FU4, Na SONG3, Wei LI3, Yu PENG1(
)
Received:2024-07-02
Accepted:2024-10-14
Online:2025-01-25
Published:2025-03-07
Contact:
Yu PENG
蒲文宣1(
), 戴曦2, 岳佳妮3, 付秀霞4, 宋娜3, 李魏3, 彭宇1(
)
通讯作者:
彭宇
作者简介:蒲文宣E-mail: puwenxuan0313@163.com;
基金资助:CLC Number:
Wenxuan PU, Xi DAI, Jiani YUE, Xiuxia FU, Na SONG, Wei LI, Yu PENG. Research Progress of Iron Signaling and its Role in Plant-pathogen Interaction[J]. Current Biotechnology, 2025, 15(1): 1-10.
蒲文宣, 戴曦, 岳佳妮, 付秀霞, 宋娜, 李魏, 彭宇. 铁信号及其在植物-病原物互作中的研究进展[J]. 生物技术进展, 2025, 15(1): 1-10.
| 1 | KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radic. Bio. Med., 2019, 133: 11-20. |
| 2 | YONEYAMA T. Iron delivery to the growing leaves associated with leaf chlorosis in mugineic acid family phytosiderophores-generating graminaceous crops[J]. Soil Sci. Plant Nutr., 2021, (15): 1-12. |
| 3 | IMRAN M, SUN X, HUSSAIN S, et al.. Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources[J/OL]. Int. J. Mol. Sci., 2019, 20(12): E3009[2025-1-10]. . |
| 4 | VOSE P B. Iron nutrition in plants: a world overview[J]. J. Plant Nut., 1982, 5(4-7): 233-249. |
| 5 | AUNG M S, MASUDA H. How does rice defend against excess iron? Physiological and molecular mechanisms[J/OL]. Front. Plant Sci., 2020, 11: 1102[2024-12-30]. . |
| 6 | ELBASUNEY S, EL-SAYYAD G S, ATTIA M S, et al.. Ferric oxide colloid:towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against Fusarium wilt disease[J]. J.Inorg.Organomet.Polym.Mater., 2022, 32(11): 4270-4283. |
| 7 | GUERINOT M L. It's elementary: enhancing Fe3+ reduction improves rice yields[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(18):7311-7312. |
| 8 | TSAI H H, RODRÍGUEZ-CELMA J, LAN P, et al.. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization[J]. Plant Physiol., 2018, 177(1): 194-207. |
| 9 | ROBE K, CONEJERO G, GAO F, et al.. Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process[J]. New Phytol., 2021, 229(4): 2062-2079. |
| 10 | ROBE K, IZQUIERDO E, VIGNOLS F, et al.. The coumarins:secondary metabolites playing a primary role in plant nutrition and health[J]. Trends Plant Sci., 2021, 26(3): 248-259. |
| 11 | HARBORT C J, HASHIMOTO M, INOUE H, et al.. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis [J]. Cell Host Microbe, 2020, 28(6): 825-837. |
| 12 | DJAVAHERI M, MERCADO-BLANCO J, VERSLUIS C, et al.. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv.tomato in Arabidopsis [J]. MicrobiologyOpen, 2012, 1(3): 311-325. |
| 13 | LI L H, CHENG X D, LING H Q. Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato[J]. Plant Mol. Biol., 2004, 54(1): 125-136. |
| 14 | WATERS B M, LUCENA C, ROMERA F J, et al.. Ethylene involvement in the regulation of the H(+)-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants[J]. Plant Physiol.Biochem., 2007, 45(5): 293-301. |
| 15 | FOURCROY P, TISSOT N, GAYMARD F, et al.. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe(2+) transport system[J]. Mol.Plant, 2016, 9(3):485-488. |
| 16 | DEY S, REGON P, KAR S, et al.. Chelators of iron and their role in plant's iron management[J]. Physiol.Mol.Biol.Plants, 2020, 26(8): 1541-1549. |
| 17 | HERLIHY J H, LONG T A, MCDOWELL J M. Iron homeostasis and plant immune responses:recent insights and translational implications[J]. J. Biol. Chem., 2020, 295(39):13444-13457. |
| 18 | WANG M, GONG J, BHULLAR N K. Iron deficiency triggered transcriptome changes in bread wheat[J]. Comput.Struct.Biotechnol. J., 2020, 18: 2709-2722. |
| 19 | DU X Y, WANG H N, HE J F, et al.. Identification of nicotianamine synthase genes in Triticum monococcum and their expression under different Fe and Zn concentrations[J]. Gene, 2018, 672: 1-7. |
| 20 | 李洪有,钟长春,蔡芳,等.甜荞柠檬酸转运蛋白基因FeFRD3的克隆及表达分析[J]. 西北植物学报,2018,38(3):409-415. |
| LI H Y, ZHONG C C, CAI F, et al.. Cloning and expression analysis of FeFRD3 citrate efflux transporter gene in Fagopyrum esculentum [J]. Acta Bot.Boreali. Occidentalia Sin., 2018, 38(3): 409-415. | |
| 21 | ZHU C Q, ZHANG J H, ZHU L F, et al.. NH4+ facilitates iron reutilization in the cell walls of rice (Oryza sativa) roots under iron-deficiency conditions[J]. Environ. Exp. Bot., 2018, 151: 21-31. |
| 22 | EIDE D, BRODERIUS M, FETT J, et al.. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proc.Natl.Acad.Sci.USA, 1996, 93(11):5624-5628. |
| 23 | CONTE S S, WALKER E L. Transporters contributing to iron trafficking in plants[J]. Mol. Plant, 2011, 4(3): 464-476. |
| 24 | LIN Y F, LIANG H M, YANG S Y, et al.. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. New Phytol, 2009, 182(2): 392-404. |
| 25 | LI S, ZHOU X, LI H,et al.. Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis [J/OL]. PLoS ONE, 2015, 10(8): e0136647[2024-12-30]. . |
| 26 | ECKHARDT U, MARQUES AMAS, BUCKHOUT T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Mol. Biol., 2001, 45(4): 437-448. |
| 27 | KLATTE M, SCHULER M, WIRTZ M, et al.. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses[J]. Plant Physiol., 2009, 150(1): 257-271. |
| 28 | SCHULER M, RELLÁN-ÁLVAREZ R, FINK-STRAUBE C, et al.. Nicotianamine functions in the phloem-based transport of iron to sink organs,in pollen development and pollen tube growth in Arabidopsis [J]. Plant Cell, 2012, 24(6): 2380-2400. |
| 29 | INOUE H, HIGUCHI K, TAKAHASHI M, et al.. Three rice nicotianamine synthase genes,OsNAS1,OsNAS2,and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J]. Plant J., 2003, 36(3):366-381. |
| 30 | ZHOU M L, QI L P, PANG J F, et al.. Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize[J]. Funct. Integr. Genom., 2013, 13(2):229-239. |
| 31 | REGON P, DEY S, CHOWARDHARA B, et al.. Physio-biochemical and molecular assessment of iron (Fe2+) toxicity responses in contrasting indigenous aromatic Joha rice cultivars of Assam, India[J]. Protoplasma, 2021, 258(2): 289-299. |
| 32 | KAKEI Y, ISHIMARU Y, KOBAYASHI T, et al.. OsYSL16 plays a role in the allocation of iron[J]. Plant Mol. Biol., 2012, 79(6): 583-594. |
| 33 | BASHIR K, NOZOYE T, NAGASAKA S, et al.. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice[J]. J. Exp. Bot., 2017, 68(7): 1785-1795. |
| 34 | SENOURA T, SAKASHITA E, KOBAYASHI T, et al.. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant Mol. Biol., 2017, 95(4):375-387. |
| 35 | CHU H H, CHIECKO J, PUNSHON T, et al.. Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures[J]. Plant Physiol., 2010, 154(1): 197-210. |
| 36 | JIA B, GUO G L, Yu T, et al.. Analysis of endogenous IAA content and siganling genes expression in retrieved leaves of ‘dangshansuli’ pear (Pyrus Bretschneideri Rehd)[J]. Acta Bot. Boreali-Occidentalia Sin., 2021, 041(004): 595-605. |
| 37 | LV X M, ZHANG Y X, HU L, et al.. Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat:roles of phytohormone signaling[J]. J.Plant Growth Regul., 2021, 40(1): 436-450. |
| 38 | ANGULO M, GARCÍA M J, ALCÁNTARA E, et al.. Comparative study of several Fe deficiency responses in the Arabidopsis thaliana ethylene insensitive mutants ein2-1 and ein2-5 [J]. Plants, 2021, 10(2): 262[2024-12-30]. . |
| 39 | ZANG J, HUO Y, LIU J, et al.. Maize YSL2 is required for iron distribution and development in kernels[J]. J.Exp.Bot., 2020, 71(19): 5896-5910. |
| 40 | FAN W, WANG H, WU Y, et al.. H+-pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.][J]. Plant Biotechnol. J., 2017, 15(6): 698-712. |
| 41 | 李鑫, 吴元华, 顾晶晶 等.铁诱导烟草抗PVYN的调控作用研究[J]. 沈阳农业大学学报, 2009, 40(1): 11-15. |
| LI X, WU Y H, GU J J, et al.. The resistant to PVYN and defensive enzymes of tobacco induced by iron[J]. J. Shenyang Agric. Univ., 2009, 40(1): 11-15. | |
| 42 | 李晔,吴元华,赵秀香,等.铁营养抑制烟草感染TMV及其对钙信使系统调控作用研究[J]. 植物营养与肥料学报,2007,13(5):920-924. |
| LI Y, WU Y H, ZHAO X X, et al.. Studies on the regulation of the inhibition of TMV infection and calcium signaling system with iron nutrient treatment[J]. J. Plant Nutr. Fertil., 2007, 13(5):920-924. | |
| 43 | MEENA M, SWAPNIL P, DIVYANSHU K, et al.. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens:current perspectives[J]. J. Basic Microbiol., 2020, 60(10): 828-861. |
| 44 | DJAVAHERI M, MERCADO-BLANCO J, VERSLUIS C, et al.. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv.tomato in Arabidopsis [J]. MicrobiologyOpen, 2012, 1(3): 311-325. |
| 45 | PRESS C M, WILSON M, TUZUN S, et al.. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco[J]. Mol. Plant Microbe In., 2007, 10(6): 761-768. |
| 46 | DELLAGI A, SEGOND D, RIGAULT M, et al.. Microbial siderophores exert a subtle role in arabidopsis during infection by manipulating the immune response and the iron status[J]. Plant Physiol., 2009, 150(4): 1687-1696. |
| 47 | DIXON R A, ACHNINE L, KOTA P, et al.. The phenylpropanoid pathway and plant defence-a genomics perspective[J]. Mol. Plant Pathol., 2002, 3(5): 371-390. |
| 48 | XING Y, XU N, BJANDARI D D, et al.. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization[J]. Plant Cell, 2021, 33(6): 2015-2031. |
| 49 | KIEU NP, AZNAR A, SEGOND D, et al.. Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea [J]. Mol. Plant Pathol., 2012, 13(8): 816-827. |
| 50 | HSIAO P Y, CHENG C P, KOH K W, et al.. The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system[J/OL]. Sci. Rep., 2017, 7(1): 9175[2024-11-30]. . |
| 51 | DELLAGI A, RIGAULT M, SEGOND D, et al.. Siderophore- mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection[J]. Plant J., 2005, 43(2):262-272. |
| 52 | LU C K, LIANG G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea [J]. New Phytol., 2023, 237(5): 1843-1855. |
| 53 | PERKOWSKA I, POTRYKUS M, SIWINSKA J, et al.. Interplay between coumarin accumulation, iron deficiency and plant resistance to Dickeya spp.[J/OL]. Int. J. Mol. Sci., 2021, 22(12): 6449[2025-1-10]. . |
| 54 | LIU G, GREENSHIELDS D L, SAMMYNAIKEN R, et al.. Targeted alterations in iron homeostasis underlie plant defense responses[J]. J. Cell Sci., 2007, 120(Pt 4): 596-605. |
| 55 | WENNMAN A, OLIW E H, KARKEHABADI S, et al.. Crystal structure of manganese lipoxygenase of the rice blast fungus Magnaporthe oryzae [J]. J. Biol. Chem., 2016, 291(15): 8130-8139. |
| 56 | SÁNCHEZ-SANUY F, PERIS-PERIS C, TOMIYAMA S, et al.. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus[J/OL]. BMC Plant Biol., 2019, 19(1): 563[2024-12-30]. . |
| 57 | CARROLL C S, MOORE M M. Ironing out siderophore biosyn-thesis: a review of non-ribosomal peptide synthetase (nrps)-independent siderophore synthetases[J]. Crit. Rev. Biochem. Mol. Biol., 2018, 53: 356-381. |
| 58 | OIDE S, MOEDER W, KRASNOFF S, et al.. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes[J]. Plant Cell, 2006, 18(10): 2836-2853. |
| 59 | ELÍAS, JULIANA M, RAMÍREZ-MATA, et al.. The polar flagellin of Azospirillum brasilense REC3 induces a defense response in strawberry plants against the fungus Macrophomina phaseolina [J]. J. Plant Growth Regul., 2021, 41: 2992-3008. |
| 60 | EICHHORN H, LESSING F, WINTERBERG B, et al.. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis [J]. Plant Cell, 2006, 18(11): 3332-3345. |
| 61 | WANG L, PAN Y, YUAN Z H, et al.. Iron-VgrR binding disassociates VgrR-DNA and VgrR-VgrS interactions[J/OL]. PLoS Pathogens, 2016, 12[2024-12-10]. . |
| 62 | PAN Y, LIANG F, LI R J, et al.. MarR-family transcription factor HpaR controls expression of the vgrR-vgrS operon of Xanthomonas campestris pv. Campestris [J]. Mol. Plant Microbe Interact., 2018, 31(3): 299-310. |
| 63 | FRANZA T, EXPERT D. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an ‘à la carte’ menu[J]. Mol. Plant Pathol., 2013, 14(4): 429-438. |
| 64 | KUZNETS G, VIGONSKY E, WEISSMAN Z, et al.. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin[J/OL]. PLoS Pathog., 2014, 10(10): e1004407[2024-12-30]. . |
| 65 | ALBAROUKI E, DEISING H B. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola [J]. Mol. Plant Microbe In., 2013, 26(6): 695-708. |
| 66 | EICHHORN H, LESSING F, WINTERBERG B, et al.. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis [J]. Plant Cell, 2006, 18(11): 3332-3345. |
| 67 | SHIRAZI F, KONTOYIANNIS D P, IBRAHIM A S. Iron starvation induces apoptosis in rhizopus oryzae in vitro[J]. Virulence, 2015, 6(2): 121-126. |
| 68 | LI Y Y, SUI X Y, YANG J S, et al.. A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.)[J]. Biochem. Biophys. Res. Commun., 2020, 522(1): 233-239. |
| 69 | YAO Z, HAO W, WANG Y, et al.. Loss-of-function mutations in the ERF96 gene enhance iron-deficient tolerance in Arabidopsis [J]. Plant Physiol. Biochem., 2022, 175: 1-11. |
| 70 | CAMPO S, PERIS-PERIS C, SIRÉ C, et al.. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance[J]. New Phytol., 2013, 199(1): 212-227. |
| 71 | YE F, ALBAROUKI E, LINGAM B, et al.. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola [J]. Physiol. Plantarum., 2014, 151 (3): 280-292. |
| 72 | DANGOL S, CHEN Y, HWANG B K, et al.. Iron-and reactive oxygen species-dependent ferroptotic cell death in rice-Magnaporthe oryzae interactions[J]. Plant Cell, 2019, 31(1): 189-209. |
| 73 | AZNAR A, PATRIT O, BERGER A, et al.. Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii [J]. Mol. Plant Pathol., 2014, 16(5): 521-528. |
| [1] | Xiaoyi ZHAI, Haiyue ZHANG, Wenjia GUO, Xiaogang DONG. Research Progress of Cancer-associated Fibroblasts in Breast Cancer [J]. Current Biotechnology, 2025, 15(4): 636-644. |
| [2] | Chuancai LIANG, Bo QIU. Echinoside Inhibits IL-1β-induced Chondrocytes Iron Death Through Nrf2/HO-1 Pathway [J]. Current Biotechnology, 2025, 15(4): 720-725. |
| [3] | Xiaoya LIU, Shuomin ZHANG, Peng ZHENG, Rui MA, Chaojun ZHANG. Role and Mechanisms of DBNDD1 in Colorectal Cancer Development [J]. Current Biotechnology, 2025, 15(4): 726-734. |
| [4] | Yanjie WANG, Bo QIU. The Role and Research Progress of Gene P53 in Osteosarcoma [J]. Current Biotechnology, 2025, 15(2): 241-246. |
| [5] | Shangshang WANG, Zhenya XUE, Haiyan XING, Xue YANG, Min WANG, Qing RAO. Influence of Different Lodging Sites on the Stemness of Leukemia Cells in a Mouse Leukemia Model [J]. Current Biotechnology, 2025, 15(2): 349-354. |
| [6] | Yeerkenbieke BUERLAN, Wenjia GUO, Xiaogang DONG. Advances on the Function of POSTN in Tumor Microenvironment [J]. Current Biotechnology, 2024, 14(2): 205-210. |
| [7] | Pengxiao ZHANG, Nian HU. The Research Progress on Action Mechanism of Melanoma Immunotherapy [J]. Current Biotechnology, 2023, 13(6): 900-906. |
| [8] | Wenbo MA, Yiqun PAN, Qun WANG, Zhuang MA, Minglian WANG, Yishu YANG. Preliminary Study on the Application of Graphene-coated Iron Nitride Magnetic Beads to Capture Lung Cancer Circulating Tumor Cells [J]. Current Biotechnology, 2023, 13(4): 628-636. |
| [9] | Yongchao LI, Zhao YANG. Status and Countermeasures of Bispecific Antibody Drugs [J]. Current Biotechnology, 2023, 13(3): 353-358. |
| [10] | Jiayi LIN, Ju XIE, Yueping ZHU, Wenyu XIE. Metabolomics and its Application in Environmental Toxicology [J]. Current Biotechnology, 2022, 12(5): 683-689. |
| [11] | Peimin LIU, Jinping LUO, Quanxin GAO. Research Progress of Environmental Microorganisms in Aquaculture [J]. Current Biotechnology, 2022, 12(5): 690-695. |
| [12] | Yichao LIU, Chao LU, Yuhua ZHAN, Xiubin KE, Wei LU, Yongliang YAN. Expressional and Functional Characterization of the Ferric Uptake Regulator Fur in Pseudomonas stutzeri A1501 [J]. Current Biotechnology, 2022, 12(3): 387-395. |
| [13] | Xin WU, Dan WAN, Yulong YIN. Research Progress on Calcium, Phosphorus and Trace Elements Nutrition in Livestock and Poultry [J]. Current Biotechnology, 2021, 11(4): 455-461. |
| [14] | LIU Shibo1, WU Hao1, HONG Jiao2, LIU Mengyu1, YAO Mawulikplimi Adzavon1, ZHAO Pengxiang1*. Advances in the Study of Inflammation-tumor Transformation in Ocular Diseases [J]. Curr. Biotech., 2020, 10(3): 234-241. |
| [15] | ZHANG Zaibao1,2§, ZHAO Hai1§, HU Menghui1, DENG Lijun1, WANG Qi1, LI Jiuli1, YUAN Hongyu1,2. Application Progress of Omics in the Research of Anther Development Ⅰ: Transcriptomics [J]. Curr. Biotech., 2019, 9(5): 433-439. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||