Current Biotechnology ›› 2024, Vol. 14 ›› Issue (5): 697-711.DOI: 10.19586/j.2095-2341.2024.0104
• Reviews • Next Articles
Huanzhen WU1(
), Ye YANG1,2,3,4, Xiuming CUI1,2,3,4, Yuan LIU1,2,3,4(
)
Received:2024-05-22
Accepted:2024-08-01
Online:2024-09-25
Published:2024-10-22
Contact:
Yuan LIU
吴焕振1(
), 杨野1,2,3,4, 崔秀明1,2,3,4, 刘源1,2,3,4(
)
通讯作者:
刘源
作者简介:吴焕振 E-mail:whz1632024@163.com;
基金资助:CLC Number:
Huanzhen WU, Ye YANG, Xiuming CUI, Yuan LIU. The Current Status and Improvement Strategies of Agricultural Biological Control Technology[J]. Current Biotechnology, 2024, 14(5): 697-711.
吴焕振, 杨野, 崔秀明, 刘源. 农业生物防治技术的现状及改进策略[J]. 生物技术进展, 2024, 14(5): 697-711.
| 1 | BERNARDES M F F, PAZIN M, PEREIRA L C, et al.. Impact of pesticides on environmental and human health[M]// Toxicology Studies-Cells, Drugs and Environment, 2015. |
| 2 | RANI L, THAPA K, KANOJIA N, et al.. An extensive review on the consequences of chemical pesticides on human health and environment[J/OL]. J. Clean. Prod., 2021, 283: 124657[2024-07-28]. . |
| 3 | ZHAO J, LUO Q, DENG H, et al.. Opportunities and challenges of sustainable agricultural development in China[J]. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1492): 893-904. |
| 4 | STENBERG J, SUNDH I, BECHER P, et al.. Correction to: When is it biological control? A framework of definitions, mechanisms, and classifications[J]. J. Pest Sci., 2021, 94: 677-677. |
| 5 | BALE J S, VAN LENTEREN J C, BIGLER F. Biological control and sustainable food production[J]. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1492): 761-776. |
| 6 | SATHISH B, SINGH V V, KUMAR S, et al.. Incremental cost-benefit ratio of certain chemical and bio-pesticides against tomato fruit borer, Helicoverpa armigera Hubner (Noctuidae: Lepidoptera) in tomato crop[J]. Bull. Environ. Pharmacol. Life Sci., 2018, 7: 102-106. |
| 7 | AHMAD A S. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases-A review[J/OL]. Ecol. Complex., 2022, 49: 100978[2024-07-28]. . |
| 8 | SNYDER W E. Give predators a complement: conserving natural enemy biodiversity to improve biocontrol[J]. Biol. Contr., 2019, 135: 73-82. |
| 9 | LOSEY J E, DENNO R F. Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations[J/OL]. Ecology, 1998, 79(6): 2143[2024-07-28]. . |
| 10 | JONSSON M, KAARTINEN R, STRAUB C S. Relationships between natural enemy diversity and biological control[J]. Curr. Opin. Insect Sci., 2017, 20: 1-6. |
| 11 | AIGBEDION-ATALOR P O, HILL M P, AYELO P M, et al.. Can the combined use of the mirid predator Nesidiocoris tenuis and a braconid larval endoparasitoid Dolichogenidea gelechiidivoris improve the biological control of Tuta absoluta?[J/OL]. Insects, 2021, 12(11): 1004[2024-07-28]. . |
| 12 | AZEVEDO L H, LEITE L G, CHACON-OROZCO J G, et al.. Free living nematodes as alternative prey for soil predatory mites: an interdisciplinary case study of conservation biological control[J]. Biol. Contr., 2019, 132: 128-134. |
| 13 | LETOURNEAU D K, ARMBRECHT I, RIVERA B S, et al.. Does plant diversity benefit agroecosystems? A synthetic review[J]. Ecol. Appl., 2011, 21(1): 9-21. |
| 14 | IRVIN N A, PIERCE C, HODDLE M S. Evaluating the potential of flowering plants for enhancing predatory hoverflies (Syrphidae) for biological control of Diaphorina citri (Liviidae) in California[J/OL]. Biol. Contr., 2021, 157: 104574[2024-07-28]. . |
| 15 | SNYDER W E, IVES A R. Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol[J]. Ecology, 2003, 84(1): 91-107. |
| 16 | LANDIS D A, WRATTEN S D, GURR G M. Habitat management to conserve natural enemies of arthropod pests in agriculture[J]. Annu. Rev. Entomol., 2000, 45: 175-201. |
| 17 | DUNNING J B, DANIELSON B J, PULLIAM H R. Ecological processes that affect populations in complex landscapes[J/OL]. Oikos, 1992, 65(1): 169[2024-07-28]. . |
| 18 | BERENDSEN R L, PIETERSE C M J, BAKKER P A H M. The rhizosphere microbiome and plant health[J]. Trends Plant Sci., 2012, 17(8): 478-486. |
| 19 | JIAO S, WANG J, WEI G, et al.. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances[J]. Chemosphere, 2019, 235: 248-259. |
| 20 | QI Y, LIU H, ZHANG B, et al.. Investigating the effect of microbial inoculants Frankia F1 on growth-promotion, rhizosphere soil physicochemical properties, and bacterial community of ginseng[J/OL]. Appl. Soil Ecol., 2022, 172: 104369[2024-07-28]. . |
| 21 | JOHANSSON E, KOLMODIN-HEDMAN B, KÄLLSTRÖM E, et al.. IgE-mediated sensitization to predatory mites in Swedish greenhouse workers[J]. Allergy, 2003, 58(4): 337-341. |
| 22 | WANG S Y, HERRERA-BALANDRANO D D, WANG Y X, et al.. Biocontrol ability of the Bacillus amyloliquefaciens group, B. amyloliquefaciens, B. velezensis, B. nakamurai, and B. siamensis, for the management of fungal postharvest diseases: a review[J]. J. Agric. Food Chem., 2022, 70(22): 6591-6616. |
| 23 | GLARE T, CARADUS J, GELERNTER W, et al.. Have biopesticides come of age?[J]. Trends Biotechnol., 2012, 30(5): 250-258. |
| 24 | Intelligence Mordor. Microbial pesticides market size & share analysis-growth trends & forecasts (2024-2029)[DB/OL]. Mordor Intelligence, 2024[2024-07-28]. . |
| 25 | 李友顺,白小宁,李富根,等.2023年及近年我国农药登记情况和特点分析[J].农药科学与管理,2024,45(2):10-19+28. |
| LI Y S, BAI X N, LI F G, et al.. Analysis on the situation and characteristics of pesticide registration in China in 2023 and recent years[J]. Pestic. Sci. Adm., 2024, 45(2): 10-19, 28. | |
| 26 | VAN DEN B R. Biological control of insects [J]. Annu. Rev. Ecol. Syst., 1971: 45-66. |
| 27 | USMAN M, WAKIL W, SHAPIRO-ILAN D I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae)[J/OL]. Biol. Contr., 2021, 163: 104706[2024-07-28]. . |
| 28 | CULSHAW-MAURER M, SIH A, ROSENHEIM J A. Bugs scaring bugs: enemy-risk effects in biological control systems[J]. Ecol. Lett., 2020, 23(11): 1693-1714. |
| 29 | VENKANNA Y, SUROSHE S S, DAHUJA A. Non-consumptive effects of the zigzag ladybird beetle, Cheilomenes sexmaculata (Fab.) on its prey, the cotton aphid, Aphis gossypii Glover[J]. Biocontrol Sci. Technol., 2021, 31(11): 1204-1219. |
| 30 | GRASS I, LEHMANN K, THIES C, et al.. Insectivorous birds disrupt biological control of cereal aphids[J]. Ecology, 2017, 98(6): 1583-1590. |
| 31 | JI R, SIMPSON S J, YU F, et al.. Diets of migratory rosy starlings (Passeriformes: Sturnidae) and their effects on grasshoppers: Implications for a biological agent for insect pests[J]. Biol. Contr., 2008, 46(3): 547-551. |
| 32 | LITWIN A, NOWAK M, RÓŻALSKA S. Entomopathogenic fungi: unconventional applications[J]. Rev. Environ. Sci. Bio/Technol., 2020, 19(1): 23-42. |
| 33 | SHAH P A, PELL J K. Entomopathogenic fungi as biological control agents[J]. Appl. Microbiol. Biotechnol., 2003, 61(5-6): 413-423. |
| 34 | GIBSON D M, DONZELLI B G, KRASNOFF S B, et al.. Discovering the secondary metabolite potential encoded within entomopathogenic fungi[J]. Nat. Prod. Rep., 2014, 31(10): 1287-1305. |
| 35 | AZIZOGLU U, JOUZANI G S, YILMAZ N, et al.. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: a review[J/OL]. Sci. Total Environ., 2020, 734: 139169[2024-07-28]. . |
| 36 | BRAVO A, LIKITVIVATANAVONG S, GILL S S, et al.. Bacillus thuringiensis: a story of a successful bioinsecticide[J]. Insect Biochem. Mol. Biol., 2011, 41(7): 423-431. |
| 37 | RUIU L. Insect pathogenic bacteria in integrated pest management[J]. Insects, 2015, 6(2): 352-367. |
| 38 | LI S, ZHANG N, ZHANG Z, et al.. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation[J]. Biol. Fertil. Soils, 2013, 49(3): 295-303. |
| 39 | SEGARRA G, CASANOVA E, AVILÉS M, et al.. Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron[J]. Microb. Ecol., 2010, 59(1): 141-149. |
| 40 | DING Y, LIU F, YANG J, et al.. Isolation and identification of Bacillus mojavensis YL-RY0310 and its biocontrol potential against Penicillium expansum and patulin in apples[J/OL]. Biol. Contr., 2023, 182: 105239[2024-07-28]. . |
| 41 | RABARI A, RUPARELIA J, JHA C K, et al.. Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: a review[J]. Pedosphere, 2023, 33(4): 556-566. |
| 42 | SRINIVASAN K, MATHIVANAN N. Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions[J]. Biol. Contr., 2009, 51(3): 395-402. |
| 43 | SILVA H A ODA, TEIXEIRA W D, BORGES Á V, et al.. Biocontrol of potato early blight and suppression of Alternaria grandis sporulation by Clonostachys spp.[J]. Plant Pathol., 2021, 70(7): 1677-1685. |
| 44 | WANG R, AN X, LV Y, et al.. Trichoderma asperellum GD040 upregulates defense-related genes and reduces lesion size in Coffea canephora leaves inoculated with Colletotrichum cairnsense [J/OL]. Biol. Contr., 2023, 181: 105213[2024-07-28]. . |
| 45 | GONTHIER J, ARNÓ J, ROMEIS J, et al.. Few indirect effects of baculovirus on parasitoids demonstrate high compatibility of biocontrol methods against Tuta absoluta [J]. Pest Manag. Sci., 2023, 79(4): 1431-1441. |
| 46 | BAI J, LIU Y, LIU M, et al.. Application of phage therapy against red-fleshed kiwifruit canker[J/OL]. Biol. Contr., 2022, 169: 104893[2024-07-28]. . |
| 47 | LIU L, GALILEYA MEDISON R, ZHENG T W, et al.. Biocontrol potential of Bacillus amyloliquefaciens YZU-SG146 from Fraxinus hupehensis against Verticillium wilt of cotton[J/OL]. Biol. Contr., 2023, 183: 105246[2024-07-28]. . |
| 48 | MSIMBIRA L A, JAISWAL S K, DAKORA F D. Identification and characterization of phages parasitic on bradyrhizobia nodulating groundnut (Arachis hypogaea L.) in South Africa[J]. Appl. Soil Ecol., 2016, 108: 334-340. |
| 49 | SITU J, ZHENG L, XU D, et al.. Screening of effective biocontrol agents against postharvest Litchi downy blight caused by Peronophythora litchii [J/OL]. Postharvest Biol. Technol., 2023, 198: 112249[2024-07-28]. . |
| 50 | OH H S, LEE Y H. A target-site-specific screening system for antifungal compounds on appressorium formation in Magnaporthe grisea [J]. Phytopathology, 2000, 90(10): 1162-1168. |
| 51 | KJELDGAARD B, NEVES A R, FONSECA C, et al.. Quantitative high-throughput screening methods designed for identification of bacterial biocontrol strains with antifungal properties[J/OL]. Microbiol. Spectr., 2022, 10(2): e0143321[2024-07-28]. . |
| 52 | HAN S H, KANG B R, LEE J H, et al.. Isolation and characterization of oligotrophic bacteria possessing induced systemic disease resistance against plant pathogens[J]. Plant Pathol. J., 2012, 28(1): 68-74. |
| 53 | SURACHAT K, KANTACHOTE D, DEACHAMAG P, et al.. In silico genomic analysis of Rhodopseudomonas palustris strains revealed potential biocontrol agents and crop yield enhancers[J/OL]. Biol. Contr., 2022, 176: 105085[2024-07-28]. . |
| 54 | MEDINI D, DONATI C, TETTELIN H, et al.. The microbial pan-genome[J]. Curr. Opin. Genet. Dev., 2005, 15(6): 589-594. |
| 55 | HANDELSMAN J. Metagenomics: application of genomics to uncultured microorganisms[J]. Microbiol. Mol. Biol. Rev., 2004, 68(4): 669-685. |
| 56 | POMPANON F, DEAGLE B E, SYMONDSON W O, et al.. Who is eating what: diet assessment using next generation sequencing[J]. Mol. Ecol., 2012, 21(8): 1931-1950. |
| 57 | MATA V A, SILVA L P D A, VERÍSSIMO J, et al.. Combining DNA metabarcoding and ecological networks to inform conservation biocontrol by small vertebrate predators[J/OL]. Ecol. Appl., 2021, 31(8): e02457[2024-07-28]. . |
| 58 | YANG Q, ZHANG X, SOLAIRA J D, et al.. Transcriptomic analyses reveal robust changes in the defense response of apples induced by Hannaella sinensis [J/OL]. Biol. Contr., 2023, 182: 105237[2024-07-28]. . |
| 59 | POVEDA J, EUGUI D. Combined use of Trichoderma and beneficial bacteria (mainly Bacillus and Pseudomonas): Development of microbial synergistic bio-inoculants in sustainable agriculture[J/OL]. Biol. Contr., 2022, 176: 105100[2024-07-28]. . |
| 60 | BAYSAL O, LAI D, XU H H, et al.. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species[J/OL]. PLoS One, 2013, 8(1): e53182[2024-07-28]. . |
| 61 | GU N, ZHANG X, GU X, et al.. Proteomic analysis reveals the mechanisms involved in the enhanced biocontrol efficacy of Rhodotorula mucilaginosa induced by chitosan[J/OL]. Biol. Contr., 2020, 149: 104325[2024-07-28]. . |
| 62 | CHEN J, WANG X, TANG D, et al.. Oxidative stress adaptation improves the heat tolerance of Pseudomonas fluorescens SN15-2[J/OL]. Biol. Contr., 2019, 138: 104070[2024-07-28]. . |
| 63 | LI K, CHENG K, WANG H, et al.. Disentangling leaf-microbiome interactions in Arabidopsis thaliana by network mapping[J/OL]. Front. Plant Sci., 2022, 13: 996121[2024-07-28]. . |
| 64 | SARAVANAN A, KUMAR P S, KARISHMA S, et al.. A review on biosynthesis of metal nanoparticles and its environmental applications[J/OL]. Chemosphere, 2021, 264(Pt 2): 128580[2024-07-28]. . |
| 65 | SWAT I, VERMA R, CHAUHAN A, et al.. Antimicrobial potential of ag-doped ZnO nanostructure synthesized by the green method using Moringa oleifera extract[J/OL]. J. Environ. Chem. Eng., 2020, 8(3): 103730[2024-07-28]. . |
| 66 | MOUSTAFA S M N, TAHA R H. Mycogenic nano-complex for plant growth promotion and bio-control of Pythium aphanidermatum [J/OL]. Plants (Basel), 2021, 10(9): 1858[2024-07-28]. . |
| 67 | DJAYA L, HERSANT I, ISTIFADAH N, et al.. In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS)[J/OL]. Biocatal. Agric. Biotechnol., 2019, 19: 101153[2024-07-28]. . |
| 68 | JOGAIAH S, SATAPUTE P, DE BRITTO S, et al.. Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes[J]. Int. J. Biol. Macromol., 2020, 162: 1825-1838. |
| 69 | FALSINI S, CLEMENTE I, PAPINI A, et al.. When sustainable nanochemistry meets agriculture: lignin nanocapsules for bioactive compound delivery to plantlets[J]. ACS Sustainable Chem. Eng., 2019, 7(24): 19935-19942. |
| 70 | COLLIER T, VAN STEENWYK R. A critical evaluation of augmentative biological control[J]. Biol. Contr., 2004, 31(2): 245-256. |
| 71 | WAJNBERG E, ROITBERG B D, BOIVIN G. Using optimality models to improve the efficacy of parasitoids in biological control programmes[J]. Entomol. Exp. Appl., 2016, 158(1): 2-16. |
| 72 | PLOUVIER W N, WAJNBERG E. Improving the efficiency of augmentative biological control with arthropod natural enemies: a modeling approach[J]. Biol. Contr., 2018, 125: 121-130. |
| 73 | BALANZA V, MENDOZA J E, BIELZA P. Variation in susceptibility and selection for resistance to imidacloprid and thiamethoxam in Mediterranean populations of Orius laevigatus [J]. Entomol. Exp. Appl., 2019, 167(7): 626-635. |
| 74 | MENDOZA J E, BALANZA V, CIFUENTES D, et al.. Genetic improvement of Orius laevigatus for better fitness feeding on pollen[J]. J. Pest Sci., 2021, 94(3): 729-742. |
| 75 | BIELZA P, BALANZA V, CIFUENTES D, et al.. Challenges facing arthropod biological control: identifying traits for genetic improvement of predators in protected crops[J]. Pest Manag. Sci., 2020, 76(11): 3517-3526. |
| 76 | WANG Y, LUO Y, SUI Y, et al.. Exposure of Candida oleophila to sublethal salt stress induces an antioxidant response and improves biocontrol efficacy[J]. Biol. Contr., 2018, 127: 109-115. |
| 77 | ZHU X, WANG Y, WANG X, et al.. Exogenous regulators enhance the yield and stress resistance of chlamydospores of the biocontrol agent Trichoderma harzianum T4[J/OL]. J. Fungi (Basel), 2022, 8(10): 1017[2024-07-28]. . |
| 78 | CABREFIGA J, FRANCÉS J, MONTESINOS E, et al.. Improvement of fitness and efficacy of a fire blight biocontrol agent via nutritional enhancement combined with osmoadaptation[J]. Appl. Environ. Microbiol., 2011, 77(10): 3174-3181. |
| 79 | EL-SHARKAWY H H A, RASHAD Y M, ELAZAB N T. Synergism between Streptomyces viridosporus HH1 and Rhizophagus irregularis effectively induces defense responses to Fusarium wilt of pea and improves plant growth and yield[J/OL]. J. Fungi (Basel), 2022, 8(7): 683[2024-07-28]. . |
| 80 | DU Y, XIA Y, JIN K. Enhancing the biocontrol potential of the entomopathogenic fungus in multiple respects via the overexpression of a transcription factor gene MaSom1 [J/OL]. J. Fungi (Basel), 2022, 8(2): 105[2024-07-28]. . |
| 81 | LIU D, SUN H, MA H. Deciphering microbiome related to rusty roots of Panax ginseng and evaluation of antagonists against pathogenic Ilyonectria [J/OL]. Front. Microbiol., 2019, 10: 1350[2024-07-28]. . |
| 82 | LIU S, MOON C D, ZHENG N, et al.. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation[J/OL]. Microbiome, 2022, 10(1): 76[2024-07-28]. . |
| 83 | BIGGS M B, CRAIG K, GACHANGO E, et al.. Genomics- and machine learning-accelerated discovery of biocontrol bacteria[J]. Phytobiomes J., 2021, 5(4): 452-463. |
| 84 | DE CARVALHO B C M V, BARBOSA E T, DE SOUSA O M I, et al.. Trichoderma harzianum marker-free strain construction based on efficient CRISPR/Cas9 recyclable system: a helpful tool for the study of biological control agents[J/OL]. Biol. Contr., 2023, 184: 105281[2024-07-28]. . |
| [1] | Xiaoqi WU, Wenjing GONG, Guoyu LI, Ang LI, Jihua WANG, Di CUI. Knowledge Gaps and Chanllenges in Microbial Fermentation of Traditional Chinese Medicine: From Strain Selection to Quality Control [J]. Current Biotechnology, 2025, 15(2): 201-211. |
| [2] | Bowen WANG, Jinxing WANG, Chengyao QIU, Qingxian QIN, Juxiang WANG, Bo YAO, Hongyan LI, Guanxin TAN, Yingwei YANG, Guanghai JI. Control of Tobacco Bacterial Wilt by Bacillus velezensis Combined with Calcium-containing Soil Conditioner [J]. Current Biotechnology, 2024, 14(5): 839-847. |
| [3] | Bicong WU, Bo JIAO, Yu ZHANG, Xin GUO, Yu ZHANG, Xiaohong LUO, Lei DAI, Qiang WANG. Effect of Feed-to-liquid Ratio on the Quality Characteristics of Stirred UHT Walnut Yogurt [J]. Current Biotechnology, 2024, 14(4): 640-648. |
| [4] | Zhengxi SUN, Sijia HU, Yilei ZHOU, Yi HU, Ning JIANG, Lei LI, Tao LI. Overview of Small RNAs and Their Potential Application in Protection of Wheat Against Fusarium Head Blight [J]. Current Biotechnology, 2021, 11(5): 653-659. |
| [5] | WANG Anqi§, ZHU Huaxin§, ZHAO Xiang, CUI Jianxia, WANG Yan*, CUI Haixin*. Progress on Genetic Transformation of Animals and Plants Based on Nano-gene Vector [J]. Curr. Biotech., 2018, 8(4): 293-301. |
| [6] | HOU Xu, ZHANG Guoqing, HU Xiao, YAN Lichun, LIU Yueping*. Progress on Biocontrol Endophytes in Fruit Trees [J]. Curr. Biotech., 2017, 7(2): 149-154. |
| [7] | DAI Jing-sha, LI An-zhang, ZHU Hong-hui*. The Function of Myxobacteria in Biological Control of Plant Disease [J]. Curr. Biotech., 2016, 6(4): 229-234. |
| [8] | LI Gui-zhen1,2, LAI Qi-liang2, YAN Pei-sheng1,3*, SHAO Zong-ze1,2*. Advance on Marine Petroleum Pollution and Microbial Remediation [J]. Curr. Biotech., 2015, 5(3): 164-169. |
| [9] | HAN Xiao, YAN Pei-sheng*, SHI Cui-juan, YANG Shu-yan, LI Yong-peng, ZOU Xue-ping. Research Progress on Cellulase Producing by Marine Microorganisms and its Application [J]. Curr. Biotech., 2015, 5(3): 191-195. |
| [10] | LI Meng-jiao1, PENG Sheng1, XU Shao-zhong2, YU Dai-hong3, ZHAO Ming-fu1*, WEN Guo-song2*. Application of Klebsiella spp. in Agriculture and Environmental Management [J]. Curr. Biotech., 2014, 4(6): 415-420. |
| [11] | ZHANG Xin-yang, XU Xu-ping*. Progress on Microbial Technology for Removal of Antibiotics Residues Pollution [J]. Curr. Biotech., 2014, 4(5): 355-360. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||