| 1 | SIMONNEAU G, MONTANI D, CELERMAJER D S, et al.. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J/OL]. Eur. Respir. J., 2019, 53(1): 1801913[2023-10-19]. . | 
																													
																							| 2 | KLINGE C M. Estrogenic control of mitochondrial function[J/OL]. Redox Biol., 2020, 31: 101435[2023-10-19]. . | 
																													
																							| 3 | BRAND M D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling[J]. Free Radic. Biol. Med., 2016, 100: 14-31. | 
																													
																							| 4 | NOLFI-DONEGAN D, BRAGANZA A, SHIVA S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement[J/OL]. Redox Biol., 2020, 37: 101674[2023-10-19]. . | 
																													
																							| 5 | DUNHAM-SNARY K J, WU D, SYKES E A, et al.. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine[J]. Chest, 2017, 151(1): 181-192. | 
																													
																							| 6 | DUNHAM-SNARY K J, WU D, SYKES E A, et al.. Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine[J]. Chest, 2017, 151(1): 181-192I. | 
																													
																							| 7 | WARD J P, MCMURTRY I F. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem[J]. Curr. Opin. Pharmacol., 2009, 9(3): 287-296. | 
																													
																							| 8 | WANG J, JUHASZOVA M, RUBIN L J, et al.. Hypoxia inhibits gene expression of voltage-gated K+ channel alpha subunits in pulmonary artery smooth muscle cells[J]. J. Clin. Investig., 1997, 100(9): 2347-2353. | 
																													
																							| 9 | ARCHER S L, HUANG J, HENRY T, et al.. A redox-based O2 sensor in rat pulmonary vasculature[J]. Circ. Res., 1993, 73(6): 1100-1112. | 
																													
																							| 10 | SONG T, ZHENG Y M, WANG Y X. Cross talk between mitochondrial reactive oxygen species and sarcoplasmic reticulum calcium in pulmonary arterial smooth muscle cells[J]. Adv. Exp. Med. Biol., 2017, 967: 289-298. | 
																													
																							| 11 | GUZY R D, HOYOS B, ROBIN E, et al.. Mitochondrial complex Ⅲ is required for hypoxia-induced ROS production and cellular oxygen sensing[J]. Cell Metab., 2005, 1(6): 401-408. | 
																													
																							| 12 | WAYPA G B, MARKS J D, GUZY R, et al.. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells[J]. Circ. Res., 2010, 106(3): 526-535. | 
																													
																							| 13 | BONNET S, MICHELAKIS E D, PORTER C J, et al.. An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension[J]. Circulation, 2006, 113(22): 2630-2641. | 
																													
																							| 14 | MARTINS PINTO M, PAUMARD P, BOUCHEZ C, et al.. The Warburg effect and mitochondrial oxidative phosphorylation: friends or foes?[J/OL]. Biochim. Biophys. Acta Bioenerg., 2023, 1864(1): 148931[2023-10-19]. . | 
																													
																							| 15 | CHETTIMADA S, GUPTE R, RAWAT D, et al.. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and-activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension[J]. Am. J. Physiol. Lung Cell. Mol. Physiol., 2015, 308(3): 287-300. | 
																													
																							| 16 | 蒋智渊,林葆菁,黄荣杰.线粒体分裂在肺动脉高压肺血管重构中的作用[J].中国病理生理杂志,2022,38(4):758-763. | 
																													
																							| 17 | PARK Y Y, NGUYEN O T, KANG H, et al.. MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival[J/OL]. Cell Death Dis., 2014, 5(4): e1172[2023-10-19]. . | 
																													
																							| 18 | LEBOUCHER G P, TSAI Y C, YANG M, et al.. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis[J]. Mol. Cell, 2012, 47(4): 547-557. | 
																													
																							| 19 | WU H, CHEN Q. Hypoxia activation of mitophagy and its role in disease pathogenesis[J]. Antioxid. Redox Signal., 2015, 22(12): 1032-1046. | 
																													
																							| 20 | 林晶晶,杨宇丰.线粒体自噬的调控机制及其在相关疾病中的作用[J].生物技术进展,2019,9(5):467-475. | 
																													
																							| 21 | 马晨,宋怡菲,仪杨,等.氢气与线粒体作用关系的研究进展[J].生物技术进展,2023,13(3):366-374. | 
																													
																							| 22 | POST J M, HUME J R, ARCHER S L, et al.. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction[J]. Am. J. Physiol., 1992, 262(4): 882-890. | 
																													
																							| 23 | LIAO B, ZHENG Y M, YADAV V R, et al.. Hypoxia induces intracellular Ca2+ release by causing reactive oxygen species-mediated dissociation of FK506-binding protein 12.6 from ryanodine receptor 2 in pulmonary artery myocytes[J]. Antioxid. Redox Signal., 2011, 14(1): 37-47. | 
																													
																							| 24 | GONZÁLEZ-PACHECO F R, CARAMELO C, CASTILLA M A, et al.. Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma[J]. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc., 2002, 17(3): 392-398. | 
																													
																							| 25 | DORJGOCHOO T, GAO Y T, CHOW W H, et al.. Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself[J]. Am. J. Clin. Nutr., 2012, 96(2): 405-414. | 
																													
																							| 26 | LÜNEBURG N, SIQUES P, BRITO J, et al.. Long-term chronic intermittent hypobaric hypoxia in rats causes an imbalance in the asymmetric dimethylarginine/nitric oxide pathway and ROS activity: a possible synergistic mechanism for altitude pulmonary hypertension?[J/OL]. Pulm. Med., 2016, 2016: 6578578[2023-10-19]. . | 
																													
																							| 27 | KISHIMOTO Y, KATO T, ITO M, et al.. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects[J]. J. Thorac. Cardiovasc. Surg., 2015, 150(3): 645-654. | 
																													
																							| 28 | VEITH C, SCHERMULY R T, BRANDES R P, et al.. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension[J]. J. Physiol., 2016, 594(5): 1167-1177. | 
																													
																							| 29 | MARTÍNEZ-REYES I, CHANDEL N S. Mitochondrial TCA cycle metabolites control physiology and disease[J/OL]. Nat. Commun., 2020, 11(1): 102[2023-10-19]. . | 
																													
																							| 30 | TRUONG L, ZHENG Y M, WANG Y X. The potential important role of mitochondrial rieske iron-sulfur protein as a novel therapeutic target for pulmonary hypertension in chronic obstructive pulmonary disease[J/OL]. Biomedicines, 2022, 10(5): 957[2023-10-19]. . | 
																													
																							| 31 | WAYPA G B, MARKS J D, GUZY R D, et al.. Superoxide generated at mitochondrial complex Ⅲ triggers acute responses to hypoxia in the pulmonary circulation[J]. Am. J. Respir. Crit. Care Med., 2013, 187(4): 424-432. | 
																													
																							| 32 | ADESINA S E, KANG B Y, BIJLI K M, et al.. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension[J]. Free. Radic. Biol. Med., 2015, 87: 36-47. | 
																													
																							| 33 | SIQUES P, BRITO J, PENA E. Reactive oxygen species and pulmonary vasculature during hypobaric hypoxia[J/OL]. Front. Physiol., 2018, 9: 865[2023-10-19]. . | 
																													
																							| 34 | JAMES M O, JAHN S C, ZHONG G, et al.. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1[J]. Pharmacol. Ther., 2017, 170: 166-180. | 
																													
																							| 35 | MICHELAKIS E D, MCMURTRY M S, WU X C, et al.. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels[J]. Circulation, 2002, 105(2): 244-250. | 
																													
																							| 36 | MICHELAKIS E D, GURTU V, WEBSTER L, et al.. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients[J/OL]. Sci. Transl. Med., 2017, 9(413): eaao4583[2023-10-19]. . | 
																													
																							| 37 | SUTENDRA G, MICHELAKIS E D. The metabolic basis of pulmonary arterial hypertension[J]. Cell Metab., 2014, 19(4): 558-573. | 
																													
																							| 38 | DUMAS S J, BRU-MERCIER G, COURBOULIN A, et al.. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension[J]. Circulation, 2018, 137(22): 2371-2389. | 
																													
																							| 39 | MARSBOOM G, TOTH P T, RYAN J J, et al.. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension[J]. Circ. Res., 2012, 110(11): 1484-1497. | 
																													
																							| 40 | RYAN J J, MARSBOOM G, FANG Y H, et al.. PGC1α-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension[J]. Am. J. Respir. Crit. Care Med., 2013, 187(8): 865-878. | 
																													
																							| 41 | YE J X, WANG S S, GE M, et al.. Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension[J]. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(11): 1233-1242. | 
																													
																							| 42 | DIEBOLD I, HENNIGS J K, MIYAGAWA K, et al.. BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension[J]. Cell Metab., 2015, 21(4): 596-608. | 
																													
																							| 43 | LIU R, XU C, ZHANG W, et al.. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia[J/OL]. Cell Death Dis., 2022, 13(7): 634[2023-10-19]. . | 
																													
																							| 44 | LIN M J, YANG X R, CAO Y N, et al.. Hydrogen peroxide-induced Ca2+ mobilization in pulmonary arterial smooth muscle cells[J]. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(6): 1598-1608. | 
																													
																							| 45 | KINNEAR N P, WYATT C N, CLARK J H, et al.. Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle[J]. Cell Calcium, 2008, 44(2): 190-201. | 
																													
																							| 46 | DROMPARIS P, PAULIN R, SUTENDRA G, et al.. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension[J]. Circ. Res., 2013, 113(2): 126-136. | 
																													
																							| 47 | SUTENDRA G, DROMPARIS P, WRIGHT P, et al.. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension[J/OL]. Sci. Transl. Med., 2011, 3(88): 88ra55[2023-10-19]. . |