| 1 | VAN DER MEIJ A, WORSLEY S F, HUTCHINGS M I, et al.. Chemical ecology of antibiotic production by actinomycetes[J]. FEMS Microbiol. Rev., 2017, 3: 392-416. | 
																													
																							| 2 | 宋国栋, 廖宏娟, 张志斌, 等. 非定向激活沉默基因簇挖掘链霉菌活性次级代谢产物研究进展[J]. 天然产物研究与开发, 2023, 35(8):1442-1456. | 
																													
																							|  | SONG G D, LIAO H J, ZHANG Z B, et al.. Advances in non-directed activation of silent gene clusters for mining active secondary metabolites of Streptomyces [J]. Nat.Prod.Res.Dev., 2023, 35(8): 1442-1456. | 
																													
																							| 3 | XUE Z, WANG S, SUN J, et al.. Research progress on morphological differentiation and secondary metabolite biosynthesis of Streptomyces [J]. Acta Microbiol. Sin., 2021, 61(12): 3870-3886. | 
																													
																							| 4 | WANG C, MEI X, ZHU W. A brief introduction to natural products derived from marinestreptomyces[J]. Mar. Sci. J., 2016, 10: 86-124. | 
																													
																							| 5 | 陈巧莉, 黄杰, 陈森瑜, 等. 海洋链霉菌次级代谢产物研究进展[J]. 生物技术进展, 2023, 13(06): 844-852. | 
																													
																							|  | CHEN Q L, HUANG J, CHEN S Y, et al.. Research progress on secondary metabolites of marine streptomyces[J]. Curr. Biotechnol., 2023, 13(6): 844-852. | 
																													
																							| 6 | 许爽. 基于共培养探索黑曲霉L14和镰刀菌R1次级代谢产物研究[D]. 浙江: 浙江工业大学, 2023. | 
																													
																							| 7 | 刘象博. 土壤微生物及海洋链霉菌次级代谢产物生物合成基因的挖掘[D]. 江苏: 南京农业大学, 2018. | 
																													
																							| 8 | WANG R. Marine streptomyces research on metabolites and their antibacterial activity[J]. Chin. J. Marine Drugs, 2023, 42(1): 20-24. | 
																													
																							| 9 | SCHORN M A, ALANJARY M M, AGUINALDO K, et al.. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters[J]. Microbiology, 2016, 162(12): 2075-2086. | 
																													
																							| 10 | 刘象博, 柴树茂, 曹明明, 等. 海洋链霉菌Streptomyces sp.MCCC 1A09830抗菌成分的分离与鉴定[J]. 食品工业科技, 2020, 41(9): 108-113+118. | 
																													
																							|  | LIU X B, CHAI S M, CAO M M, et al.. Isolation and identification of antimicrobial active substance produced by marine Streptomyces sp. MCCC 1A09830[J]. Sci. Technol. Food Industr., 2020, 41(9): 108-113+118. | 
																													
																							| 11 | KALKREUTER E, PAN G, CEPEDA A J, et al.. Targeting bacterial genomes for natural product discovery[J]. Trends Pharmacol. Sci., 2020, 41(1): 13-26. | 
																													
																							| 12 | LEWIS K. The science of antibiotic discovery[J]. Cell, 2020, 181(1): 29-45. | 
																													
																							| 13 | KAUTSAR S A, BLIN K, SHAW S, et al.. MIBiG 2.0: a repository for biosynthetic gene clusters of known function[J]. Nucleic Acids Res., 2020, 48(D1): 454-458. | 
																													
																							| 14 | YANG Z J, HE J, WEI X, et al..Exploration and genome mining of natural products from marine Streptomyces [J]. Appl. Microbiol.Biotechnol., 2019,104(1):67-76. | 
																													
																							| 15 | LI S. Research on metabolites of marine derived Streptomyces IMB18-531 and Cladosporium IMB19-099 co-cultured[J]. Acta Pharmaceutica Sin., 2023, 58(4): 967-974. | 
																													
																							| 16 | HU Z, WENG Q, CAI Z, et al.. Optimization of fermentation conditions and medium components for chrysomycin a production by Streptomyces sp. 891-B6[J]. BMC Microbiol., 2024, 24(1): 120[2024-12-30]. . | 
																													
																							| 17 | 张永贺. 深海链霉Streptomyces somaliensis SCSIO ZH66中隐性次级代谢产物合成基因簇的激活及其产物发酵优化[D]. 青岛: 中国海洋大学, 2015. | 
																													
																							| 18 | UNDABARRENA A, UGALDE J A, SEEGER M, et al.. Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis[J/OL]. PeerJ, 2017, 5: e2912[2024-12-30]. . | 
																													
																							| 19 | RATEB M E, HALLYBURTON I, HOUSSEN W E, et al.. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture[J]. RSC Adv., 2013, 3(34):14444-14450. | 
																													
																							| 20 | ZHANG X, WANG X, HUANG T, et al.. Ammosamide natural products from sponge-derived Streptomyces sp. S52-B[J]. Microbiol. China, 2021, 48(7): 2298-2306. | 
																													
																							| 21 | ZHANG C, DING W, QIN X. et al.. Genome sequencing of Streptomyces olivaceus SCSIO T05 and activated production of lobophorin CR4 via metabolic engineering and genome mining[J/OL]. Mar. Drugs, 2019, 17(10): 593[2024-12-30]. . | 
																													
																							| 22 | DING W, TU J, ZHANG H, et al.. Genome mining and metabolic profiling uncover polycyclic tetramate macrolactams from Streptomyces koyangensis SCSIO 5802[J/OL]. Mar. Drugs, 2021, 19(8): 440[2024-12-30]. . | 
																													
																							| 23 | ALMEIDA E L, KAUR N, JENNINGS L K, et al.. Genome mining coupled with OSMAC-based cultivation reveal differential production of surugamide A by the marine sponge isolate Streptomyces sp. SM17 when compared to its terrestrial relative S. albidoflavus J1074[J/OL]. Microorganisms, 2019, 7(10): 394[2024-12-30]. . | 
																													
																							| 24 | BAE M, AN J S, BAE E S, et al.. Donghaesulfins a and B, dimeric Benz[a]anthracene thioethers from volcanic island derived Streptomyces sp.[J]. Org. Lett., 2019, 21(10): 3635-3639. | 
																													
																							| 25 | KIM T S, SHIN Y H, LEE H M, et al.. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway[J/OL]. Sci. Rep., 2017, 7: 3431[2024-12-30]. . | 
																													
																							| 26 | BAE M, AN J S, HONG S H, et al.. Donghaecyclinones A-C:new cytotoxic rearranged angucyclinones from a volcanic island-derived marine Streptomyces sp.[J/OL]. Mar. Drugs, 2020, 18(2):E121[2024-12-30]. . | 
																													
																							| 27 | BODE H B, BETHE B, HÖFS R, et al.. Big effects from small changes:possible ways to explore nature's chemical diversity[J]. Chembiochem, 2002, 3(7): 619-627. | 
																													
																							| 28 | SCHWARZ J, HUBMANN G, ROSENTHAL K, et al.. Triaging of culture conditions for enhanced secondary metabolite diversity from different bacteria[J/OL]. Biomolecules, 2021, 11(2): 193[2024-12-30]. . | 
																													
																							| 29 | 王冉. 多种生境来源放线菌次级代谢产物的初步研究[D]. 南宁: 广西大学, 2016. | 
																													
																							| 30 | 何昊. pH-营养联合调控促进北极海洋链霉菌生产二活菌素[D]. 华东理工大学, 2016. | 
																													
																							| 31 | PHAM V T T, NGUYEN H T, NGUYEN C T, et al.. Identification and enhancing production of a novel macrolide compound in engineered Streptomyces peucetius [J]. RSC Adv., 2021, 11(5):3168-3173. | 
																													
																							| 32 | PAN R, BAI X, CHEN J, et al.. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review[J/OL]. Front. Microbiol., 2019, 10: 294[2024-12-30]. . | 
																													
																							| 33 | 项仁鑫, 杨小虎, 方佳双, 等. 响应面法优化链霉菌HY6-S36产星孢菌素的发酵条件[J]. 中国抗生素杂志, 2021, 46(8):749-755. | 
																													
																							|  | XIANG R X, YANG X H, FANG J S, et al.. Optimization fermentation conditions of staursporine from Streptomyces sp. HY6-S36 by response surface methodology[J]. Chin. J. Antibiot., 2021, 46(8): 749-755. | 
																													
																							| 34 | ZHOU H, JIANG Y, XU Y X, et al.. Research on quorum sensing inhibitory activity and culture condition of a marine Streptomyces parvulus [J]. Biotechnol. Bull., 2019, 35(10): 137-143. | 
																													
																							| 35 | HORINOUCHI S, BEPPU T. A-factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus [J]. Mol. Microbiol., 1994, 12(6): 859-864. | 
																													
																							| 36 | KICHOUH-AIADI S, GALLARDO-RODRÍGUEZ J J, CERÓN-GARCÍA M C, et al.. Exploring the potential of epigenetic chemicals to increase metabolite production in the dinoflagellate microalga Amphidinium carterae [J]. J. Appl. Phycol., 2024, 36(3): 1169-1179. | 
																													
																							| 37 | 袁慧敏, 李伟, 郑永标, 等. 链霉菌沉默基因簇激活的多效性方法研究进展[J]. 药物生物技术, 2022, 29(1): 72-76. | 
																													
																							|  | YUAN H M, LI W, ZHENG Y B, et al.. Advances in pleiotropic mthods for activation of slent gene custers in Streptomyces[J]. Chin. J. Pharm. Biotechnol., 2022, 29(1): 72-76. | 
																													
																							| 38 | ZHANG M M, WONG F T, WANG Y J, et al.. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters[J]. Nat. Chem. Biol., 2017, 13: 607-609. | 
																													
																							| 39 | TOMM H A, UCCIFERRI L, ROSS A C. Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production[J]. J.Ind.Microbiol.Biotechnol., 2019, 46(9): 1381-1400. | 
																													
																							| 40 | 崔阳阳. PPTase过表达激活链霉菌沉默生物合成基因簇的研究[D]. 南京农业大学, 2022. | 
																													
																							| 41 | YUSHCHUK O, OSTASH I, MÖSKER E, et al.. Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA[J/OL]. Sci. Rep., 2021, 11: 3507[2024-12-30]. . | 
																													
																							| 42 | QIAN Z Y, BRUHN T, PAUL M . et al .. Discovery of the streptoketides by direct cloning and rapid heterologous expression of a cryptic PKS II gene cluster from Streptomyces sp. Tü6314[J]. J. Org. Chem., 2020, 85(2):664-673. | 
																													
																							| 43 | BRAKHAGE A A, SCHROECKH V. Fungal secondary metabolites-strategies to activate silent gene clusters[J]. Fungal Genet. Biol., 2011, 48(1): 15-22. | 
																													
																							| 44 | SUN L, ZENG J, CUI P, et al.. Manipulation of two regulatory genes for efficient production of chromomycins in Streptomyces reseiscleroticus [J]. J. Biol. Eng., 2018, 12: 9[2024-12-30]. . | 
																													
																							| 45 | KITANI S, HOSHIKA M, NIHIRA T. Disruption of sscR encoding a γ-butyrolactone autoregulator receptor in Streptomyces scabies NBRC 12914 affects production of secondary metabolites[J]. Folia Microbiol., 2008, 53(2): 115-124. | 
																													
																							| 46 | HUO L, HU G J, FU C. Heterologous expression of bacterial natual product biosynthetic pathways[J]. Nat. Prod. Rep., 2019, 36: 1412-1436. | 
																													
																							| 47 | XU M, ZHANG F, CHENG Z, et al.. Functional genome mining reveals a class V lanthipeptide containing a d-amino acid introduced by an F420 H2-dependent reductase[J]. Angew Chem. Int. Ed. Engl., 2020, 59(41): 18029-18035. |