| 1 | PÉREZ-CANTERO A, MARTIN-VICENTE A, GUARRO J, et al.. Analysis of the cyp51 genes contribution to azole resistance in Aspergillus section Nigri with the CRISPR-Cas9 technique[J]. Antimicrob. Agents Chemother., 2023, 65(5):1996- 1920. | 
																													
																							| 2 | MIRHENDI H, ZAREI F, MOTAMEDI M, et al..  Aspergillus tubingensis and Aspergillus niger as the dominant black Aspergillus, use of simple PCR-RFLP for preliminary differentiation[J]. J. Mycol. Med., 2016, 26(1): 9-16. | 
																													
																							| 3 | JIN F J, WANG B T, WANG Z D, et al.. CRISPR/Cas9-based genome editing and its application in Aspergillus species[J/OL]. J. Fungi Basel., 2022, 8(5): 467[2024-06-13]. . | 
																													
																							| 4 | YOSHIOKA I, KIRIMURA K. Rapid and marker-free gene replacement in citric acid-producing Aspergillus tubingensis (A. niger) WU-2223L by the CRISPR/Cas9 system-based genome editing technique using DNA fragments encoding sgRNAs[J]. J. Biosci. Bioeng., 2021, 131(6): 579-588. | 
																													
																							| 5 | LIU M, REHMAN S, TANG X, et al.. Methodologies for improving HDR efficiency[J/OL]. Genetics, 2018, 9: 691[2024-06-13]. . | 
																													
																							| 6 | GARRIGUES S, PENG M, KUN R S, et al.. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9[J/OL]. mBio, 2023, 14(4): e0066823[2024-06-13]. . | 
																													
																							| 7 | 高育青,张豪杰,张丹凤,等.米曲霉RIB40高效同源重组和尿苷/尿嘧啶营养缺陷型菌株的构建[J].食品工业科技,2023,44(1):200-207. | 
																													
																							|  | GAO Y Q, ZHANG H J, ZHANG D F, et al.. Construction of A high-efficiency homologous recombination and uridine/uracil auxotroph strain of Aspergillus oryzae RIB40[J]. Sci. Technol. Food Ind., 2023, 44(1): 200-207. | 
																													
																							| 8 | GANDÍA M, XU S, FONT C, et al.. Disruption of Ku70 involved in non-homologous end-joining facilitates homologous recombination but increases temperature sensitivity in the phytopathogenic fungus Penicillium digitatum [J]. Fungal. Biol., 2016, 120(3): 317-323. | 
																													
																							| 9 | FANG Z, ZHANG Y, CAI M, et al.. Improved gene targeting frequency in marine-derived filamentous fungus Aspergillus glaucus by disrupting ligD[J]. J. Appl. Genet., 2012, 53(3): 355-362. | 
																													
																							| 10 | YU C, LIU Y, MA T, et al.. Small molecules enhance CRISPR genome editing in pluripotent stem cells[J]. Cell Stem Cell, 2015, 16(2): 142-147. | 
																													
																							| 11 | MA X, CHEN X, JIN Y, et al.. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells[J/OL]. Nat. Commun., 2018, 9: 1303[2024-06-13]. . | 
																													
																							| 12 | YEH C D, RICHARDSON C D, CORN J E. Advances in genome editing through control of DNA repair pathways[J]. Nat. Cell Biol., 2019, 21(12): 1468-1478. | 
																													
																							| 13 | ZOU G, XIAO M, CHAI S, et al.. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents[J]. Microb. Biotechnol., 2021, 14(6): 2343-2355. | 
																													
																							| 14 | SONG J, YANG D, XU J, et al.. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency[J/OL]. Nat. Commun., 2016, 7: 10548[2024-06-13]. . | 
																													
																							| 15 | CHU V T, WEBER T, WEFERS B, et al.. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells[J]. Nat. Biotechnol., 2015, 33: 543-548. | 
																													
																							| 16 | GAVANDE N S, VANDERVERE-CAROZZA P S, HINSHAW H D, et al.. DNA repair targeted therapy: the past or future of cancer treatment?[J]. Pharmacol. Ther., 2016, 160: 65-83. | 
																													
																							| 17 | DING Y, WANG K F, WANG W J, et al.. Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering[J]. Appl. Microbiol. Biotechnol., 2019, 103(11): 4313-4324. | 
																													
																							| 18 | SINHA S, CHATTERJEE S, PAUL S, et al.. Olaparib enhances the Resveratrol-mediated apoptosis in breast cancer cells by inhibiting the homologous recombination repair pathway[J/OL]. Exp. Cell Res., 2022, 420(1): 113338[2024-06-13]. . | 
																													
																							| 19 | 高伟欣,黄火清,赵晶,等.应用于基因编辑的核糖核蛋白复合体的构建与活性验证[J].生物技术通报,2022,38(8):60-68. | 
																													
																							|  | GAO W X, HUANG H Q, ZHAO J, et al.. Construction and activity verification of ribonucleoprotein complex for gene editing[J]. Biotechnol. Bull., 2022, 38(8): 60-68. | 
																													
																							| 20 | BISCHOFF N, WIMBERGER S, MARESCA M, et al.. Improving precise CRISPR genome editing by small molecules: is there a magic potion?[J/OL]. Cells, 2020, 9(5): E1318[2024-06-13]. . |