| 1 | ZEIDAN J, FOMBONNE E, SCORAH J, et al.. Global prevalence of autism: a systematic review update[J]. Autism Res., 2022, 15(5): 778-790. | 
																													
																							| 2 | ASSOCIATION A P, FORCE D T. Diagnostic and statistical manual of mental disorders[M]. 5th Ed. Washington: American Psychiatric Association, 2013. | 
																													
																							| 3 | GREENE L A, TISCHLER A S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor[J]. Proc. Natl. Acad. Sci. USA, 1976, 73(7): 2424-2428. | 
																													
																							| 4 | HE X, THACKER S, ROMIGH T, et al.. Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits[J/OL]. Mol. Autism, 2015, 6(1): 1-10. | 
																													
																							| 5 | ROUT U K, CLAUSEN P. Common increase of GATA-3 level in PC-12 cells by three teratogens causing autism spectrum disorders[J]. Neurosci. Res., 2009, 64(2): 162-169. | 
																													
																							| 6 | UNSICKER C, CRISTIAN F B, VON HAHN M, et al.. SHANK2 mutations impair apoptosis, proliferation and neurite outgrowth during early neuronal differentiation in SH-SY5Y cells[J/OL]. Sci. Rep., 2021, 11(1): 2128[2021-01-22]. . | 
																													
																							| 7 | KALKAN Z, DURASI I M, SEZERMAN U, et al.. Potential of GRID2 receptor gene for preventing TNF-induced neurodegeneration in autism[J]. Neurosci. Lett., 2016, 620: 62-69. | 
																													
																							| 8 | SCHROEDER D I, LOTT P, KORF I, et al.. Large-scale methylation domains mark a functional subset of neuronally expressed genes[J]. Genome Res., 2011, 21(10): 1583-1591. | 
																													
																							| 9 | TAKAHASHI K, TANABE K, OHNUKI M, et al.. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. | 
																													
																							| 10 | LIM C S, KIM M J, CHOI J E, et al.. Dysfunction of NMDA receptors in neuronal models of an autism spectrum disorder patient with a DSCAM mutation and in Dscam-knockout mice[J]. Mol. Psychiatry, 2021, 26(12): 7538-7549. | 
																													
																							| 11 | MARCHETTO M C, BELINSON H, TIAN Y, et al.. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals[J]. Mol. Psychiatry, 2017, 22(6): 820-835. | 
																													
																							| 12 | CHIOLA S, EDGAR N U, SHCHEGLOVITOV A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism[J]. Mol. Psychiatry, 2022, 27(1): 249-258. | 
																													
																							| 13 | DE-JONG J O, LLAPASHTICA C, GENESTINE M, et al.. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder[J/OL]. Nat. Commun., 2021, 12(1): 4087[2021-09-01]. . | 
																													
																							| 14 | NAYAN N S, YAZID M A M, NALLAPPAN K, et al.. In vitro modulation of endogenous antioxidant enzyme activities and oxidative stress in autism lymphoblastoid cell line (ALCL) by stingless bee honey treatment[J]. Oxidative Med. Cell. Longev., 2020, 2020: 1-7. | 
																													
																							| 15 | ROSE S, BENNURI S C, DAVIS J E, et al.. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism[J/OL]. Transl. Psychiatry, 2018, 8(1): 42[2018-02-02]. . | 
																													
																							| 16 | KAWADA K, MIMORI S, OKUMA Y, et al.. Involvement of endoplasmic reticulum stress and neurite outgrowth in the model mice of autism spectrum disorder[J]. Neurochem. Int., 2018, 119: 115-119. | 
																													
																							| 17 | CHANDA S, HALE W D, ZHANG B, et al.. Unique versus redundant functions of neuroligin genes in shaping excitatory and inhibitory synapse properties[J]. J. Neurosci., 2017, 37(29): 6816-6836. | 
																													
																							| 18 | KANELLOPOULOS A K, SEMELIDOU O, KOTINI A G, et al.. Learning and memory deficits consequent to reduction of the fragile X mental retardation protein result from metabotropic glutamate receptor-mediated inhibition of cAMP signaling in Drosophila [J]. J. Neurosci., 2012, 32(38): 13111-13124. | 
																													
																							| 19 | KAUR K, SIMON A F, CHAUHAN V, et al.. Effect of bisphenol A on Drosophila melanogaster behavior: a new model for the studies on neurodevelopmental disorders[J]. Behav. Brain Res., 2015, 284: 77-84. | 
																													
																							| 20 | RAWSTHORNE H, CALAHORRO F, HOLDEN-DYE L, et al.. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour[J/OL]. PLoS ONE, 2021, 16(5): e243121[2021-05-27]. . | 
																													
																							| 21 | MCDIARMID T A, BELMADANI M, LIANG J, et al.. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(1): 656-667. | 
																													
																							| 22 | RAWSTHORNE H, CALAHORRO F, FEIST E, et al.. Neuroligin dependence of social behaviour in Caenorhabditis elegans provides a model to investigate an autism-associated gene[J]. Hum. Mol. Genet., 2021, 29(21): 3546-3553. | 
																													
																							| 23 | SCHMEISSER K, FARDGHASSEMI Y, PARKER J A. A rapid chemical-genetic screen utilizing impaired movement phenotypes in C. elegans: input into genetics of neurodevelopmental disorders[J]. Exp. Neurol., 2017, 293: 101-114. | 
																													
																							| 24 | JACOB J, RIBES V, MOORE S, et al.. Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome[J]. Dis. Models Mech., 2014, 7(1): 107-117. | 
																													
																							| 25 | GAUTHIER J, CHAMPAGNE N, LAFRENIERE R G, et al.. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(17): 7863-7868. | 
																													
																							| 26 | PANAITOF S C. A songbird animal model for dissecting the genetic bases of autism spectrum disorder[J]. Dis. Markers, 2012, 33(5): 241-249. | 
																													
																							| 27 | BROMLEY R L, MAWER G, CLAYTON-SMITH J, et al.. Autism spectrum disorders following in utero exposure to antiepileptic drugs[J]. Neurology, 2008, 71(23): 1923-1924. | 
																													
																							| 28 | BROMLEY R L, MAWER G E, BRIGGS M, et al.. The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs[J]. J. Neurol. Neurosurg. Psychiatry, 2013, 84(6): 637-643. | 
																													
																							| 29 | CHALIHA D, ALBRECHT M, VACCAREZZA M, et al.. A systematic review of the valproic-acid-induced rodent model of autism[J]. Dev. Neurosci., 2020, 42(1): 12-48. | 
																													
																							| 30 | JUYBARI K B, SEPEHRI G, MEYMANDI M S, et al.. Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats[J/OL]. Neurotoxicol. Teratol., 2020, 81: 106905[2020-06-11]. . | 
																													
																							| 31 | LIU F, HORTON-SPARKS K, HULL V, et al.. The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism[J/OL]. Mol. Autism, 2018, 9(1): 1-13. | 
																													
																							| 32 | WEI R, LI Q, LAM S, et al.. A single low dose of valproic acid in late prenatal life alters postnatal behavior and glutamic acid decarboxylase levels in the mouse[J]. Behav. Brain Res., 2016, 314: 190-198. | 
																													
																							| 33 | VARGHESE M, KESHAV N, JACOT-DESCOMBES S, et al.. Autism spectrum disorder: neuropathology and animal models[J]. Acta Neuropathol., 2017, 134(4): 537-566. | 
																													
																							| 34 | BLANCHARD D C, DEFENSOR E B, MEYZA K Z, et al.. BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate[J]. Neurosci. Biobehav. Rev., 2012, 36(1): 285-296. | 
																													
																							| 35 | MEYZA K Z, BLANCHARD D C. The BTBR mouse model of idiopathic autism-current view on mechanisms[J]. Neurosci. Biobehav. Rev., 2017, 76(Pt A): 99-110. | 
																													
																							| 36 | NAVIAUX J C, SCHUCHBAUER M A, LI K, et al.. Reversal of autism-like behaviors and metabolism in adult mice with single-dose antipurinergic therapy[J/OL]. Transl. Psychiatry, 2014, 4: e400[2014-06-17]. . | 
																													
																							| 37 | HSIAO E Y, MCBRIDE S W, HSIEN S, et al.. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell, 2013, 155(7): 1451-1463. | 
																													
																							| 38 | KIRSTEN T B, CHAVES-KIRSTEN G P, CHAIBLE L M, et al.. Hypoactivity of the central dopaminergic system and autistic-like behavior induced by a single early prenatal exposure to lipopolysaccharide[J]. J. Neurosci. Res., 2012, 90(10): 1903-1912. | 
																													
																							| 39 | SOTO A M, KIRSTEN T B, REIS-SILVA T M, et al.. Single early prenatal lipopolysaccharide exposure impairs striatal monoamines and maternal care in female rats[J]. Life Sci., 2013, 92(14-16): 852-858. | 
																													
																							| 40 | BLUNDELL J, BLAISS C A, ETHERTON M R, et al.. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior[J]. J. Neurosci., 2010, 30(6): 2115-2129. | 
																													
																							| 41 | WÖHR M, SILVERMAN J L, SCATTONI M L, et al.. Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2[J]. Behav. Brain Res., 2013, 251: 50-64. | 
																													
																							| 42 | CAO W, LIN S, XIA Q Q, et al.. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice[J]. Neuron, 2018, 97(6): 1253-1260. | 
																													
																							| 43 | JAMAIN S, RADYUSHKIN K, HAMMERSCHMIDT K, et al.. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism[J]. Proc. Natl. Acad. Sci. USA, 2008, 105(5): 1710-1715. | 
																													
																							| 44 | DACHTLER J, GLASPER J, COHEN R N, et al.. Deletion of α-neurexin Ⅱ results in autism-related behaviors in mice[J/OL]. Transl. Psychiatry, 2014, 4(11): e484[2023-04-05]. . | 
																													
																							| 45 | VAAGS A K, LIONEL A C, SATO D, et al.. Rare deletions at the neurexin 3 locus in autism spectrum disorder[J]. Am. J. Hum. Genet., 2012, 90(1): 133-141. | 
																													
																							| 46 | PEÑAGARIKANO O, ABRAHAMS B S, HERMAN E I, et al.. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits[J]. Cell, 2011, 147(1): 235-246. | 
																													
																							| 47 | PECA J, FELICIANO C, TING J T, et al.. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction[J]. Nature, 2011, 472(7344): 437-442. | 
																													
																							| 48 | WANG X, MCCOY P A, RODRIGUIZ R M, et al.. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3[J]. Hum. Mol. Genet., 2011, 20(15): 3093-3108. | 
																													
																							| 49 | QIU Z. Deciphering MECP2-associated disorders: disrupted circuits and the hope for repair[J]. Curr. Opin. Neurobiol., 2018, 48: 30-36. | 
																													
																							| 50 | LU Z, LIU Z, MAO W, et al.. Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice[J/OL]. Cell Death Dis., 2020, 11(2): 85[2020-02-03]. . | 
																													
																							| 51 | PEIER A M, MCILWAIN K L, KENNESON A, et al.. (Over) correction of FMR1 deficiency with YAC transgenics: behavioral and physical features[J]. Hum. Mol. Genet., 2000, 9(8): 1145-1159. | 
																													
																							| 52 | KOGA K, LIU M G, QIU S, et al.. Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice[J]. J. Neurosci., 2015, 35(5): 2033-2043. | 
																													
																							| 53 | REITH R M, MCKENNA J, WU H, et al.. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex[J]. Neurobiol. Dis., 2013, 51: 93-103. | 
																													
																							| 54 | NORMAND E A, CRANDALL S R, THORN C A, et al.. Temporal and mosaic Tsc1 deletion in the developing thalamus disrupts thalamocortical circuitry, neural function, and behavior[J]. Neuron, 2013, 78(5): 895-909. | 
																													
																							| 55 | CUPOLILLO D, HOXHA E, FARALLI A, et al.. Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice[J]. Neuropsychopharmacology, 2016, 41(6): 1457-1466. | 
																													
																							| 56 | CLIPPERTON-ALLEN A E, PAGE D T. Decreased aggression and increased repetitive behavior in Pten haploinsufficient mice[J]. Genes Brain Behav., 2015, 14(2): 145-157. | 
																													
																							| 57 | XU X, LI C, GAO X, et al.. Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders[J]. Cell Res., 2018, 28(1): 48-68. | 
																													
																							| 58 | EI-ANSARY A K, BACHA A B, KOTB M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid[J]. J. Neuroinflamm., 2012, 9(1): 1-14. | 
																													
																							| 59 | 廉彬.5-羟色胺受体在孤独症样大鼠中的作用及其机制[D].重庆:西南大学,2020. | 
																													
																							| 60 | MARTÍNEZ-CERDEÑO V, CAMACHO J, FOX E, et al.. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals[J]. Cereb. Cortex, 2016, 26(1): 374-383. | 
																													
																							| 61 | ZHOU Y, SHARMA J, KE Q, et al.. Atypical behaviour and connectivity in SHANK3-mutant macaques[J]. Nature, 2019, 570(7761): 326-331. | 
																													
																							| 62 | ZHANG B, ZHOU Z, ZHOU Y, et al.. Social-valence-related increased attention in rett syndrome cynomolgus monkeys: an eye-tracking study[J]. Autism Res., 2019, 12(11): 1585-1597. | 
																													
																							| 63 | YASUE M, NAKAGAMI A, NAKAGAKI K, et al.. Inequity aversion is observed in common marmosets but not in marmoset models of autism induced by prenatal exposure to valproic acid[J]. Behav. Brain Res., 2018, 343: 36-40. | 
																													
																							| 64 | ROSE D R, CAREAGA M, VAN DE WATER J, et al.. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation[J]. Brain Behav. Immun., 2017, 63: 60-70. | 
																													
																							| 65 | SELEMON L D, FRIEDMAN H R. Motor stereotypies and cognitive perseveration in non-human primates exposed to early gestational irradiation[J]. Neuroscience, 2013, 248: 213-224. | 
																													
																							| 66 | BAUMAN M D, IOSIF A M, ASHWOOD P, et al.. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey[J/OL]. Transl. Psychiatry, 2013, 3: e278[2013-07-09]. . | 
																													
																							| 67 | LIN J, DEREZENDE V L, COSTA M DA, et al.. Cholesterol metabolism pathway in autism spectrum disorder: from animal models to clinical observations[J/OL]. Pharmacol. Biochem. Behav., 2023, 223: 173522[2023-01-28]. . | 
																													
																							| 68 | THAWLEY A J, VENEZIANI L P, RABELO-DA-PONTE F D, et al.. Aberrant IL-17 levels in rodent models of autism spectrum disorder: a systematic review[J/OL]. Front. Immunol., 2022, 13: 874064[2022-06-10]. . | 
																													
																							| 69 | CASTRO A C, MONTEIRO P. Auditory dysfunction in animal models of autism spectrum disorder[J/OL]. Front. Mol. Neurosci., 2022, 15: 845155[2022-04-13]. . | 
																													
																							| 70 | TSILIONI I, DODMAN N, PETRA A I, et al.. Elevated serum neurotensin and CRH levels in children with autistic spectrum disorders and tail-chasing Bull Terriers with a phenotype similar to autism[J/OL]. Transl. Psychiatry, 2014, 4(10): e466[2014-10-14]. . |