Current Biotechnology ›› 2023, Vol. 13 ›› Issue (4): 485-491.DOI: 10.19586/j.2095-2341.2023.0033
• Reviews • Next Articles
Received:2023-03-15
Accepted:2023-03-31
Online:2023-07-25
Published:2023-08-03
Contact:
Jiangdong LIU
通讯作者:
刘江东
作者简介:王阿利 E-mail: 2020202040077@whu.edu.cn;
CLC Number:
Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish[J]. Current Biotechnology, 2023, 13(4): 485-491.
王阿利, 刘江东. CRISPR/Cas系统在斑马鱼中的研究进展[J]. 生物技术进展, 2023, 13(4): 485-491.
| 种类 | CRISPR酶 | 向导RNA | PAM序列 | 目标序列 | 应用 | 参考文献 |
|---|---|---|---|---|---|---|
| Ⅱ | Cas9 | sgRNA | NGG | DNA | 基因组编辑、活细胞成像、转录调控 | [ |
| Ⅴ | Cas12 | crRNA/sgRNA | TTN | DNA | 基因组编辑 | [ |
| Ⅵ | Cas13 | crRNA | — | RNA | RNA编辑和示踪 | [ |
Table 1 Types and characteristics of CRISPR/Cas Class 2 systems
| 种类 | CRISPR酶 | 向导RNA | PAM序列 | 目标序列 | 应用 | 参考文献 |
|---|---|---|---|---|---|---|
| Ⅱ | Cas9 | sgRNA | NGG | DNA | 基因组编辑、活细胞成像、转录调控 | [ |
| Ⅴ | Cas12 | crRNA/sgRNA | TTN | DNA | 基因组编辑 | [ |
| Ⅵ | Cas13 | crRNA | — | RNA | RNA编辑和示踪 | [ |
| 1 | KARI G, RODECK U, DICKER A P. Zebrafish: an emerging model system for human disease and drug discovery[J]. Clin. Pharmacol. Ther., 2007, 82(1): 70-80. |
| 2 | VAN DER O J, JORE M M, WESTRA E R, et al.. CRISPR-based adaptive and heritable immunity in prokaryotes[J]. Trends Biochem. Sci., 2009, 34(8): 401-407. |
| 3 | HSU P D, SCOTT D A, WEINSTEIN J A, et al.. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat. Biotechnol., 2013, 31(9): 827-832. |
| 4 | CONG L, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
| 5 | KETTLEBOROUGH R N, BUSCH-NENTWICH E M, HARVEY S A, et al.. A systematic genome-wide analysis of zebrafish protein-coding gene function[J]. Nature, 2013, 496(7446): 494-497. |
| 6 | BARRANGOU R, FREMAUX C, DEVEAU H, et al.. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
| 7 | WRIGHT A V, NUÑEZ J K, DOUDNA J A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering[J]. Cell, 2016, 164(1-2): 29-44. |
| 8 | MAKAROVA K S, WOLF Y I, IRANZO J, et al.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat. Rev. Microbiol., 2020, 18(2): 67-83. |
| 9 | PETRI K, ZHANG W T, MA J Y, et al.. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nat. Biotechnol., 2022, 40(2): 189-193. |
| 10 | CHAN S H, TANG Y, MIAO L Y, et al.. Brd4 and P300 confer transcriptional competency during zygotic genome activation[J]. Dev. Cell, 2019, 49(6): 867-881. |
| 11 | LONG L J, GUO H, YAO D, et al.. Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio [J]. Cell Res., 2015, 25(5): 638-641. |
| 12 | HAN B Z, ZHANG Y G, ZHOU Y, et al.. ErCas12a and T5exo-ErCas12a mediate simple and efficient genome editing in zebrafish[J/OL]. Biology, 2022, 11(3): 411[2022-03-08]. . |
| 13 | XIN C C, YIN J H, YUAN S P, et al.. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J/OL]. Nat. Commun., 2022, 13(1): 5623[2022-09-24]. . |
| 14 | MORENO-MATEOS M A, FERNANDEZ J P, ROUET R, et al.. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing[J/OL]. Nat. Commun., 2017, 8(1): 2024[2017-12-08]. . |
| 15 | HUANG Y K, GAO B Q, MENG Q, et al.. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos[J/OL]. Genome Biol., 2023, 24(1): 15[2023-01-19]. . |
| 16 | KUSHAWAH G, HERNANDEZ-HUERTAS L, EZ A N, et al.. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos[J]. Dev. Cell, 2020, 54(6): 805-817. |
| 17 | LIU D, WANG Z X, XIAO A, et al.. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized Cas9 and evaluation of off-targeting effect[J]. J. Genet. Genomics, 2014, 41(1): 43-46. |
| 18 | MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al.. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(3): 733-740. |
| 19 | SHAH S A, ERDMANN S, MOJICA F J M, et al.. Protospacer recognition motifs: mixed identities and functional diversity[J]. RNA Biol., 2013, 10(5): 891-899. |
| 20 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
| 21 | STERNBERG S H, REDDING S, JINEK M, et al.. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67. |
| 22 | JIANG W Y, BIKARD D, COX D, et al.. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat. Biotechnol., 2013, 31(3): 233-239. |
| 23 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al.. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-485. |
| 24 | FENG Y, CHEN C, HAN Y X, et al.. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using SaCas9[J]. G3-Genes Genom. Genet., 2016, 6(8): 2517-2521. |
| 25 | LIU Y X, LIANG F, DONG Z J, et al.. Genome editing in zebrafish by ScCas9 recognizing NNG PAM[J/OL]. Cells, 2021, 10(8): 2099[2021-08-16]. . |
| 26 | HOSHIJIMA K, JURYNEC M J, KLATT S D, et al.. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish[J]. Dev. Cell, 2019, 51(5): 645-657. |
| 27 | FERNANDEZ J P, VEJNAR C E, GIRALDEZ A J, et al.. Optimized CRISPR-Cpf1 system for genome editing in zebrafish[J]. Methods, 2018, 150:11-18. |
| 28 | ABLAIN J, DURAND E M, YANG S, et al.. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish[J]. Dev. Cell, 2015, 32(6): 756-764. |
| 29 | TERZIOGLU M, SARALAHTI A, PIIPPO H, et al.. Improving CRISPR/Cas9 mutagenesis efficiency by delaying the early development of zebrafish embryos[J/OL]. Sci. Rep., 2020, 10(1): 21023[2020-12-03]. . |
| 30 | AUER T O, DUROURE K, CIAN A D, et al.. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair[J]. Genome Res., 2014, 24(1): 142-153. |
| 31 | ZU Y, TONG X J, WANG Z X, et al.. TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nat. Methods, 2013, 10(4): 329-331. |
| 32 | BAI H P, LIU L J, AN K, et al.. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish[J/OL]. BMC Genomics, 2020, 21(1): 67[2020-01-21]. . |
| 33 | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat. Biotechnol., 2020, 38(7): 824-844. |
| 34 | LEVIC D S, YAMAGUCHI N, WANG S Y, et al.. Knock-in tagging in zebrafish facilitated by insertion into non-coding regions[J/OL]. Development, 2021, 148(19): dev199994[2021-07-08]. . |
| 35 | SIELIWONCZYK E, VANDENDRIESSCHE B, CLAES C, et al.. Improved selection of zebrafish CRISPR editing by early next-generation sequencing based genotyping[J/OL]. Sci. Rep., 2023, 13(1): 1491[2023-01-27]. . |
| 36 | GUO D G, WANG D B, LIU C, et al.. CRISPR-based genomic loci labeling revealed ordered spatial organization of chromatin in living diploid human cells[J/OL]. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(12): 118518[2019-07-31]. . |
| 37 | BIKARD D, JIANG W Y, SAMAI P, et al.. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J]. Nucl. Acids Res., 2013, 41(15): 7429-7437. |
| 38 | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J/OL]. Science, 2016, 353(6299): aaf5573[2016-08-05]. . |
| 39 | KONERMANN S, LOTFY P, BRIDEAU N J, et al.. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3): 665-676. |
| 40 | JING X, XIE B R, CHEN L X, et al.. Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing[J/OL]. Nucl. Acids Res., 2018, 46(15): e90[2018-05-31]. . |
| 41 | AMAN R, ALI Z, BUTT H, et al.. RNA virus interference via CRISPR/Cas13a system in plants[J/OL]. Genome Biol., 2018, 19(1): 1[2018-01-04]. . |
| 42 | ANDERSON J L, MULLIGAN T S, SHEN M C, et al.. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay[J/OL]. PLoS Genet., 2017, 13(11): e1007105[2017-11-21]. . |
| 43 | MOU H W, SMITH J L, PENG L T, et al.. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion[J/OL]. Genome Biol., 2017, 18(1): 108[2017-06-14]. . |
| 44 | EL-BROLOSY M A, KONTARAKIS Z, ROSSI A, et al.. Genetic compensation triggered by mutant mRNA degradation[J]. Nature, 2019, 568(7751): 193-197. |
| 45 | MA Z P, ZHU P P, SHI H, et al.. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components[J]. Nature, 2019, 568(7751): 259-263. |
| 46 | TAKASUGI P R, WANG S Z, TRUONG K T, et al.. Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos[J/OL]. Genetics, 2022, 220(1): iyab196[2022-01-04]. . |
| 47 | KIM B H, ZHANG G J. Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs[J]. G3-Genes Genom. Genet., 2020, 10(3): 1029-1037. |
| 48 | SHIRAKI T, KAWAKAMI K. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish[J/OL]. Sci. Rep., 2018, 8(1): 13366[2018-09-06]. . |
| 49 | WU R S, LAM I I, CLAY H, et al.. A rapid method for directed gene knockout for screening in G0 zebrafish[J]. Dev. Cell, 2018, 46(1): 112-125. |
| 50 | KAWAHARA G, KARPF J A, MYERS J A, et al.. Drug screening in a zebrafish model of Duchenne muscular dystrophy[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(13): 5331-5336. |
| 51 | WEBER T, KÖSTER R. Genetic tools for multicolor imaging in zebrafish larvae[J]. Methods, 2013, 62(3): 279-291. |
| 52 | EDWARDS J J, ROUILLARD A D, FERNANDEZ N F, et al.. Systems analysis implicates WAVE2 complex in the pathogenesis of developmental left-sided obstructive heart defects[J]. JACC-Basic Transl. Sci., 2020, 5(4): 376-386. |
| 53 | HUANG M M, AKERBERG A A, ZHANG X R, et al.. Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome[J/OL]. Nat. Commun., 2022, 13(1): 5877[2022-10-05]. . |
| 54 | HODOROVICH D R, LINDSLEY P M, BERRY A A, et al.. Morphological and sensorimotor phenotypes in a zebrafish CHARGE syndrome model are domain-dependent[J/OL]. Genes Brain Behav., 2023: e12839[2023-03-14]. . |
| 55 | GABELLINI C, PUCCI C, DE CESARI C, et al.. CRISPR/Cas9-induced inactivation of the Autism-risk gene setd5 leads to social impairments in zebrafish[J/OL]. Int. J. Mol. Sci., 2023, 24(1): 167[2022-12-22]. . |
| 56 | WHEELER M A, JARONEN M, COVACU R, et al.. Environmental control of astrocyte pathogenic activities in CNS inflammation[J]. Cell, 2019, 176(3): 581-596. |
| 57 | DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J/OL]. Science, 2014, 346(6213): 1258096[2014-11-28]. . |
| 58 | COTTERELL J, VILA-CEJUDO M, BATLLE-MORERA L, et al.. Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing[J/OL]. Development, 2020, 147(9): dev184481[2023-03-14]. . |
| 59 | MCKENNA A, FINDLAY G M, GAGNON J A, et al.. Whole-organism lineage tracing by combinatorial and cumulative genome editing[J/OL]. Science, 2016, 353(6298): aaf7907[2016-07-29]. . |
| 60 | ALEMANY A, FLORESCU M, BARON C S, et al.. Whole-organism clone tracing using single-cell sequencing[J]. Nature, 2018, 556(7699): 108-112. |
| [1] | Yunshuo CHENG, Zixu LI, Guanghua MAO, Xiangyang WU. Studies on the Immunological Effects of Dinotefuran Exposure on Zebrafish Juveniles [J]. Current Biotechnology, 2025, 15(3): 446-455. |
| [2] | Yiyang LI, Zhizheng ZHOU, Shufei WANG, Boya LIU, Yufei LIU, Xiaoyan LI, Hongshu SUI, Dongwei LIU. Application and Prospect of CRISPR/Cas9 Gene Editing Technology in Disease Treatment [J]. Current Biotechnology, 2025, 15(1): 35-42. |
| [3] | Guang HU, Zhi WANG, Wei FU, Yuting SHI, Shanshan CHEN, Liang LUO, Shuang WEI. Establishment of Detection Method Based on TaqMan Real-time Fluorescence Quantitative PCR Technology for OsWx-edited Rice [J]. Current Biotechnology, 2025, 15(1): 86-92. |
| [4] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. |
| [5] | Mingyang JIA, Lei WANG, Junfeng CHEN, Jiaqing ZHANG, Xiangzhou YAN, Baosong XING, Jing WANG. Research Progress of CRISPR/Cas9 Gene Editing Technology in Livestock and Poultry Breeding [J]. Current Biotechnology, 2024, 14(4): 529-536. |
| [6] | Jiacong ZHANG, Jigang LU. Establishment of Biallelic Knockout Technique in Nile Tilapia (Oreochromis niloticus) Based on CRISPR/Cas9 System: A Case Study of SLC24A5 Gene [J]. Current Biotechnology, 2024, 14(3): 442-450. |
| [7] | Xuejiao CHEN, Ping YU, Di ZHAO, Jia SONG, Xiangbo MIN. Study on the Anti-inflammatory Effect of Lactiplantibacillus plantarum HCS03-001 Based on Zebrafish Model and Network Pharmacology [J]. Current Biotechnology, 2024, 14(2): 295-303. |
| [8] | Xiaotian ZHANG, Zhi WANG, Pengyu ZHU, Shuang WEI, Wei FU, Chunmeng HUANG, Zhihong LI, Huiyu WANG, Yue JIAO. A Rapid Detection Method Based on qPCR for CRISPR/Cas9 Edited Crops [J]. Current Biotechnology, 2023, 13(6): 907-912. |
| [9] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. |
| [10] | Qianting YANG, Xiaoying TIAN, Junfang ZHANG, Bingshe HAN. Effect of tp53 Knockout on High Temperature Tolerance and Swimming Capacity in Zebrafish [J]. Current Biotechnology, 2023, 13(4): 580-587. |
| [11] | Maolan XIONG, Siyan WEI, Juntao LUO, Bingshe HAN, Junfang ZHANG. The Effects of hdac11 Knockout of Zebrafish on Lipid Metabolism [J]. Current Biotechnology, 2023, 13(4): 588-595. |
| [12] | Siyu GAI, Ziqi CHEN, Hanchao XIA, Rengui ZHAO, Xiangguo LIU. Research Progress of CRISPR/Cas9 Technology in Plant Promoter Editing [J]. Current Biotechnology, 2023, 13(3): 321-328. |
| [13] | Hui SUN, Chunyi ZHANG, Ling JIANG. Progress of Plant Molecular Farming in Pharmaceutical Use [J]. Current Biotechnology, 2023, 13(1): 65-71. |
| [14] | Yang YANG, Fenglin WANG, De LIU, Yuanyuan LUO, Jianhua ZHU. Research Progress of CRISPR⁃Cas9 Technology on the Production of Plant Secondary Metabolites [J]. Current Biotechnology, 2022, 12(6): 806-816. |
| [15] | Kun YU, Jiaqi XUE, Jinkuan WANG, Yongtao YU. Research Progress on Application of CRISPR/Cas9 Gene Editing Technique in Filamentous Fungi [J]. Current Biotechnology, 2022, 12(5): 696-704. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
