Current Biotechnology ›› 2023, Vol. 13 ›› Issue (1): 55-64.DOI: 10.19586/j.2095-2341.2022.0105
• Reviews • Previous Articles Next Articles
					
													Guangxuan TANG1,2( ), Liwei HE1,2, Yongyu CHEN2, Jiayan ZHANG1, Yaqi DAI2, Huixiong LV2, Lihui LIU1,3(
), Liwei HE1,2, Yongyu CHEN2, Jiayan ZHANG1, Yaqi DAI2, Huixiong LV2, Lihui LIU1,3( )
)
												  
						
						
						
					
				
Received:2022-06-17
															
							
															
							
																	Accepted:2022-10-09
															
							
																	Online:2023-01-25
															
							
																	Published:2023-02-07
															
						Contact:
								Lihui LIU   
													
        
               		唐广宣1,2( ), 何莉薇1,2, 陈泳妤2, 张佳研1, 戴雅琪2, 吕辉雄2, 刘丽辉1,3(
), 何莉薇1,2, 陈泳妤2, 张佳研1, 戴雅琪2, 吕辉雄2, 刘丽辉1,3( )
)
                  
        
        
        
        
    
通讯作者:
					刘丽辉
							作者简介:唐广宣 E-mail:19927534378@163.com;
				
							基金资助:CLC Number:
Guangxuan TANG, Liwei HE, Yongyu CHEN, Jiayan ZHANG, Yaqi DAI, Huixiong LV, Lihui LIU. Techniques on Colonization and Detection of Plant Endophytes and its Application[J]. Current Biotechnology, 2023, 13(1): 55-64.
唐广宣, 何莉薇, 陈泳妤, 张佳研, 戴雅琪, 吕辉雄, 刘丽辉. 植物内生菌定殖检测技术及其应用[J]. 生物技术进展, 2023, 13(1): 55-64.
| 方式 | 原理 | 特点 | 应用 | 
|---|---|---|---|
| 通过宿主的气孔、擦伤口、切口等通道侵染 | 根部接种内生菌的主要入侵途径是通过根系与土壤等摩擦而造成的伤口进入;茎部接种则是以茎干上的皮孔、蜜腺等作为通道;叶部则是通过气孔、水孔等[ | 用于定殖研究中较为便捷的侵染方式 | 根部侵染法:伤根法、灌根法、浸根法、蘸根法;茎干侵染法:打孔法、针刺法;叶片:伤叶法、喷雾法。有研究采用喷雾和灌根相结合的方法,用枯草芽孢杆菌Y13(Bacillus subtilis 13)侵染油茶[ | 
| 内生菌分泌酶来降解宿主细胞纤维素 | 通过代谢产生细胞壁降解酶等物质对局部细胞壁进行降解;内生菌穿过内胚层的裂纹,移动进入木质部,进而帮助细菌侵入和定殖[ | 属于植物的原始自身操作方式,内生菌不受植物体外其他因素影响 | 如蓝细菌(Brasilonema)能分泌破坏植物细胞壁的水解酶进而侵入植物体内 | 
| 通过种子的垂直传递定殖 | 内生菌与宿主可协同进化,参与宿主的生长、繁衍,伴随着种子的萌发,通过种子的垂直传递将内生菌从亲本传到后代 | 宿主种子的表面普遍带有独特的共生微生物群落,会影响种子的萌发、生长和宿主健康,也是植物内生菌垂直传播的一种方式 | 种子内生菌的垂直传递规律用于现代生物育种中,有研究使用内生细菌PW7悬液处理黑麦草(Lolium multiflorum L.)种子进行浸种定殖[ | 
Table 1 The way of endophytic bacteria infecting plants
| 方式 | 原理 | 特点 | 应用 | 
|---|---|---|---|
| 通过宿主的气孔、擦伤口、切口等通道侵染 | 根部接种内生菌的主要入侵途径是通过根系与土壤等摩擦而造成的伤口进入;茎部接种则是以茎干上的皮孔、蜜腺等作为通道;叶部则是通过气孔、水孔等[ | 用于定殖研究中较为便捷的侵染方式 | 根部侵染法:伤根法、灌根法、浸根法、蘸根法;茎干侵染法:打孔法、针刺法;叶片:伤叶法、喷雾法。有研究采用喷雾和灌根相结合的方法,用枯草芽孢杆菌Y13(Bacillus subtilis 13)侵染油茶[ | 
| 内生菌分泌酶来降解宿主细胞纤维素 | 通过代谢产生细胞壁降解酶等物质对局部细胞壁进行降解;内生菌穿过内胚层的裂纹,移动进入木质部,进而帮助细菌侵入和定殖[ | 属于植物的原始自身操作方式,内生菌不受植物体外其他因素影响 | 如蓝细菌(Brasilonema)能分泌破坏植物细胞壁的水解酶进而侵入植物体内 | 
| 通过种子的垂直传递定殖 | 内生菌与宿主可协同进化,参与宿主的生长、繁衍,伴随着种子的萌发,通过种子的垂直传递将内生菌从亲本传到后代 | 宿主种子的表面普遍带有独特的共生微生物群落,会影响种子的萌发、生长和宿主健康,也是植物内生菌垂直传播的一种方式 | 种子内生菌的垂直传递规律用于现代生物育种中,有研究使用内生细菌PW7悬液处理黑麦草(Lolium multiflorum L.)种子进行浸种定殖[ | 
| 方法 | 优点 | 缺点 | 应用 | 
|---|---|---|---|
| 荧光蛋白标记法 | 后续操作简单,可直接观察,能够长时间且稳定地标记,保持荧光时不会对生物体功能产生影响[ | 标记基因重组到质粒上表达的不稳定性较高,并且成功率不高。相比之下,重组到基因组的稳定性较高。此外,将重组DNA导入革兰氏阳性菌的难度较阴性菌更大 | 受荧光蛋白基因的导入方式、菌株侵染标记方式和定殖检测方式等影响,包括使用绿色荧光蛋白标记菌株YN28-P43GFPmut3a,观测其在烟草体内的定殖量及分布[ | 
| 抗生素标记法 | 易于分析统计、消耗低、快速、适用范围广等 | 定量不准确、准确率低、回收下限较高且易出现抗生素屏蔽现象 | 该法是一种常用的定殖检测手段,已从单抗生素标记发展到了多种抗生素同时标记,广泛应用于生物防治植物病害中。例如以拮抗病原真菌双抗性和抗利福平为标记,对辣椒体内的枯草芽孢杆菌BS-2(Bacillus subtilis BS-2)定殖情况进行观测[ | 
| 实时荧光定量PCR法 | 检测方便、反应迅速、灵敏度高、自动化高,可以很好地分析目标菌株定殖过程中发挥特殊作用的基因 | 对设备要求较高,并且会产生气溶胶污染问题,从而导致出现假阳性,影响结果的准确性和特异性[ | 广泛应用于内生菌的定殖检测中。如DaSilva等[ | 
| 高通量测序法 | 灵敏度高、可操作性强,能够精准解析目标菌株的代谢途径和功能基因。通过测序也可以检测受体植株的微生物群落和丰度 | 成本高、后续需分析大量数据等 | 从遗传水平上对菌株进行解读,探索内生菌在宿主植物体内的功能基因、代谢路径、定殖机制等,例如利用高通量测序法,确定R-13菌能否成功定殖于龙葵体内[ | 
| 特异性寡合核苷酸片段标记法 | 灵敏度高、特异性强,大大地提高了实验的准确率和效率 | 基因结构的高度多态性造成可操作性差 | 发展出了寡核苷酸探针双标记荧光原位杂交技术(DOPE-FISH)和芯片标记技术,这些技术可以更加精准地检测目标菌株在宿主体内的定殖情况 | 
Table 2 The commonly used detection methods for colonization of endophyte
| 方法 | 优点 | 缺点 | 应用 | 
|---|---|---|---|
| 荧光蛋白标记法 | 后续操作简单,可直接观察,能够长时间且稳定地标记,保持荧光时不会对生物体功能产生影响[ | 标记基因重组到质粒上表达的不稳定性较高,并且成功率不高。相比之下,重组到基因组的稳定性较高。此外,将重组DNA导入革兰氏阳性菌的难度较阴性菌更大 | 受荧光蛋白基因的导入方式、菌株侵染标记方式和定殖检测方式等影响,包括使用绿色荧光蛋白标记菌株YN28-P43GFPmut3a,观测其在烟草体内的定殖量及分布[ | 
| 抗生素标记法 | 易于分析统计、消耗低、快速、适用范围广等 | 定量不准确、准确率低、回收下限较高且易出现抗生素屏蔽现象 | 该法是一种常用的定殖检测手段,已从单抗生素标记发展到了多种抗生素同时标记,广泛应用于生物防治植物病害中。例如以拮抗病原真菌双抗性和抗利福平为标记,对辣椒体内的枯草芽孢杆菌BS-2(Bacillus subtilis BS-2)定殖情况进行观测[ | 
| 实时荧光定量PCR法 | 检测方便、反应迅速、灵敏度高、自动化高,可以很好地分析目标菌株定殖过程中发挥特殊作用的基因 | 对设备要求较高,并且会产生气溶胶污染问题,从而导致出现假阳性,影响结果的准确性和特异性[ | 广泛应用于内生菌的定殖检测中。如DaSilva等[ | 
| 高通量测序法 | 灵敏度高、可操作性强,能够精准解析目标菌株的代谢途径和功能基因。通过测序也可以检测受体植株的微生物群落和丰度 | 成本高、后续需分析大量数据等 | 从遗传水平上对菌株进行解读,探索内生菌在宿主植物体内的功能基因、代谢路径、定殖机制等,例如利用高通量测序法,确定R-13菌能否成功定殖于龙葵体内[ | 
| 特异性寡合核苷酸片段标记法 | 灵敏度高、特异性强,大大地提高了实验的准确率和效率 | 基因结构的高度多态性造成可操作性差 | 发展出了寡核苷酸探针双标记荧光原位杂交技术(DOPE-FISH)和芯片标记技术,这些技术可以更加精准地检测目标菌株在宿主体内的定殖情况 | 
| 1 | TRIVEDI P, LEACH J E, TRINGE S G, et al.. Plant-microbiome interactions: from community assembly to plant health[J]. Nat. Rev. Microbiol., 2020, 18(11): 607-621. | 
| 2 | AFZAL I, SHINWARI Z K, SIKANDAR S, et al.. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants[J]. Microbiol. Res., 2019, 221:36-49. | 
| 3 | NAIK B S. Functional roles of fungal endophytes in host fitness during stress conditions[J]. Symbiosis, 2019, 79(2): 99-115. | 
| 4 | PINSKI A, BETEKHTIN A, HUPERT-KOCUREK K, et al.. Defining the genetic basis of plant-endophytic bacteria interactions[J/OL]. Int. J. Mol. Sci., 2019, 20:1947[2022-12-05]. . | 
| 5 | COMPANT S, REITER B, SESSITSCH A, et al.. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN[J]. Appl. Environ. Microbiol., 2005, 71(4): 1685-1693. | 
| 6 | SA R B, ZHANG J L, SUN J Z, et al.. Colonization characteristics of poplar fungal disease biocontrol bacteria N6-34 and the inhibitory effect on pathogenic fungi by real-time fluorescence quantitative PCR detection[J]. Curr. Microbiol., 2021, 78(8): 2916-2925. | 
| 7 | WANG B, WAN C X, ZENG H. Colonization on cotton plants with a GFP labeled strain of Bacillus axarquiensis [J]. Curr. Microbiol., 2020, 77(10): 3085-3094. | 
| 8 | XU J X, LI Z Y, LV X, et al.. Isolation and characterization of Bacillus subtilis strain 1-L-29, an endophytic bacteria from Camellia oleifera with antimicrobial activity and efficient plant-root colonization[J/OL]. PLoS ONE, 2020, 15(4):0232096[2022-12-05]. . | 
| 9 | 张玮川, 李剑, 王志宇, 等. 内生菌-植物联合修复污染土壤研究进展[J]. 农业资源与环境学报, 2021, 38 (3): 10-17. | 
| 10 | 王吉永, 郭龙妹, 高林怡, 等. 植物内生菌的侵染定殖研究概况[J]. 江苏农业科学, 2019, 47(14): 36-39. | 
| 11 | 李爽, 左尚武, 王万清, 等. 菌株Serratia sp. PW7不同定殖方式对黑麦草中芘污染去除及其内生菌群的影响[J]. 农业环境科学学报, 2018, 37(12): 2755-2764. | 
| 12 | ZHOU J, HUANG P W, LI X, et al.. Generalist endophyte phomopsis liquidambaris colonization of Oryza sativa L.promotes plant growth under nitrogen starvation[J]. Plant Mol. Biol., 2022, 109(6): 703-715. | 
| 13 | NAVEED M, MITTER B, REICHENAUER T G, et al.. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17[J]. Environ. Exp. Bot., 2014, 97: 30-39. | 
| 14 | FRANK A C, GUZMAN J P S, SHAY J E. Transmission of bacterial endophytes[J/OL]. Microorganisms, 2017, 5(4): 70[2022-12-05]. . | 
| 15 | ANYASI R O, ATAGANA H I, SUTHERLAND R. Comparative study of the colonization of chromolaena and tobacco plants by Bacteria safensis CS4 using different methods of inoculation[J]. Pakistan J. Biol. Sci., 2019, 22(7): 309-317. | 
| 16 | 陈超琼. 骆驼刺内生细菌新种Pantoea alhagi LTYR-11Z的鉴定及其促作物抗旱机制初步研究[D]. 咸阳:西北农林科技大学, 2017. | 
| 17 | VAISHNAV A, SHUKLA A K, SHARMA A, et al.. Endophytic bacteria in plant salt stress tolerance: current and future prospects[J]. J. Plant Growth Regul., 2019, 38(2): 650-668. | 
| 18 | WADHAMS G H, ARMITAGE J P. Making sense of it all: bacterial chemotaxis[J]. Nat. Rev. Mol. Cell Biol., 2004, 5(12): 1024-1037. | 
| 19 | JIA Y, FU W Q, XU M, et al.. Colonization cues of leaf-and root-inhabiting bacterial microbiota of Atractylodes lancea derived in vitro and in vivo[J]. Plant Soil, 2018, 430(1-2): 49-58. | 
| 20 | LIU H W, CARVALHAIS L C, CRAWFORD M, et al.. Inner plant values: diversity, colonization and benefits from endophytic bacteria[J/OL]. Front. Microbiol., 2017, 8: 2552[2022-12-05]. . | 
| 21 | 王雪菲. 解磷细菌YL6在小白菜植株中的定殖及促生机制研究[D]. 咸阳:西北农林科技大学, 2019. | 
| 22 | 赵明富, 李梦娇, 张芬芬, 等. 变栖克雷伯菌在石斛体内的定殖动态及其对石斛黑斑病的防效试验[J]. 西南林业大学学报, 2015, 35(3): 14-19. | 
| 23 | ALBORNOZ F E, PROBER S M, RYAN M H, et al.. Ecological interactions among microbial functional guilds in the plant-soil system and implications for ecosystem function[J]. Plant Soil, 2022, 476: 301-313. | 
| 24 | MORELLI M, BAHAR O, PAPADOPOULOU K K, et al.. Editorial: role of endophytes in plant health and defense against pathogens[J/OL]. Front. Plant Sci., 2020, 11: 1312[2022-12-05]. . | 
| 25 | MULLENS A, JAMANN T M. Colonization and movement of green fluorescent protein-labeled clavibacter nebraskensis in maize[J]. Plant Dis., 2021, 105(5): 1422-1431. | 
| 26 | 方珍娟, 张晓霞, 马立安. 植物内生菌研究进展[J]. 长江大学学报(自科版), 2018, 15(10): 41-45. | 
| 27 | 祁超, 寸海春, 何鹏飞, 等. 生防菌YN201490在黄瓜植株体内的定殖能力及防病机制的初步研究[J]. 云南大学学报(自然科学版), 2019, 41(1): 172-180. | 
| 28 | QUECINE M C, ARAUJO W L, ROSSETTO P B, et al.. Sugarcane growth promotion by the endophytic bacterium pantoea agglomerans 33.1[J]. Appl. Environ. Microbiol., 2012, 78(21): 7511-7518. | 
| 29 | KRZYZANOWSKA D, OBUCHOWSKI M, BIKOWSKI M, et al.. Colonization of potato rhizosphere by GFP-Tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy[J]. Sensors, 2012, 12(12): 17608-17619. | 
| 30 | BUDA G J, ISAACSON T, MATAS A J, et al.. Three-dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy[J]. Plant J., 2009, 60(2): 378-385. | 
| 31 | 沙月霞, 张昂, 伍顺华, 等. 假单胞菌S149对水稻防御酶的诱导及定殖能力[J]. 中国植保导刊, 2020, 40(7): 10-16. | 
| 32 | 王军强, 汪晶晶, 王琦, 等. 海洋细菌L1-9双抗菌株的定殖能力及其对黄瓜枯萎病的防治作用[J]. 生物技术通报, 2016, 32(6): 193-198. | 
| 33 | 李全芬, 张婷婷, 马磊. 羽毛针禾根部内生假单胞菌XG11在小麦上的定殖动态及促生效应[J]. 江苏农业科学, 2022, 50(3): 219-224. | 
| 34 | 郭继平, 马光, 王芳芳, 等. 解淀粉芽孢杆菌在葡萄叶片上的定殖能力研究[J]. 吉林农业科学, 2015, 40(4): 90-93. | 
| 35 | STAKHEEV A A, RYAZANTSEV D Y, ZVEZDINA Y K, et al.. A novel fluorescent GFP chromophore analog-based dye for quantitative PCR[J]. Biochem. Moscow, 2018, 83(7): 855-860. | 
| 36 | LIN Q, DI Y P. Determination and quantification of bacterial virulent gene expression using quantitative real-time PCR[J]. Methods Mol. Biol. (Clifton, NJ), 2020, 2102: 177-193. | 
| 37 | TAJADINI M, PANJEHPOUR M, JAVANMARD S H. Comparison of SYBR green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes[J]. Adv. Biomed. Res., 2014, 3:85. | 
| 38 | 陈飞飞, 黄金思, 王翕韫, 等. 吡咯伯克霍尔德氏菌JK-SH007多聚半乳糖醛酸酶基因的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 127-133. | 
| 39 | ZIAROVSKA J, MEDO J, KYSEL M, et al.. Endophytic bacterial microbiome diversity in early developmental stage plant tissues of wheat varieties[J/OL]. Plants Basel., 2020, 9(2): 266[2022-12-05]. . | 
| 40 | THOMAS P, SEKHAR A C. Cultivation versus molecular analysis of banana (Musa sp.) shoot-tip tissue reveals enormous diversity of normally uncultivable endophytic bacteria[J]. Microb. Ecol., 2017, 73(4): 885-899. | 
| 41 | KONG X, JIN D, TAI X, et al.. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil[J]. Sci. Total Environ., 2019, 667(1): 691-700. | 
| 42 | 庞杰, 刘月敏, 黄永春, 等. 1株草螺属植物内生菌R-13的分离鉴定及对龙葵吸收土壤镉的影响[J]. 环境科学, 2021, 42(9): 4471-4480. | 
| 43 | 萨仁格日勒. 两种生境下山羽藓(Abietinella abietina)内生细菌多样性研究[D]. 呼和浩特:内蒙古大学, 2017. | 
| 44 | 彭芳芳, 魏召新, 李勋兰,等. 基于高通量测序分析感染菌核病和健康桑果内生菌群落结构及多样性[J]. 食品科学, 2021, 42 (20): 61-68. | 
| 45 | GILAD Y, PRITCHARD J K, THORNTON K. Characterizing natural variation using next-generation sequencing technologies[J]. Trends Genet., 2009, 25(10): 463-471. | 
| 46 | 路国兵, 张瑶, 冀宪领, 等. 植物内生细菌的侵染定殖规律研究进展[J]. 生物技术通报, 2007, 3: 88-92. | 
| 47 | 刘佳怡, 王嘉欣, 宋海超,等. 纳他霉素对芒果采后胶孢炭疽菌的抑菌效果及机理[J]. 植物学报, 2019, 54(4): 455-463. | 
| 48 | ZELLER P, PLOUX O, MEJEAN A. A simple protocol for attenuating the auto-fluorescence of cyanobacteria for optimized fluorescence in situ hybridization (FISH) imaging[J]. J. Microbiol. Methods, 2016, 122: 16-19. | 
| 49 | LòPEZ-FERNàNDEZ S, COMPANT S, VRHOVSEK U, et al.. Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways[J]. Plant Soil, 2016, 405(1): 155-175. | 
| 50 | 缪海珍, 朱水芳, 张谦, 等. 采用基因芯片技术筛查农作物转基因背景[J]. 复旦学报(自然科学版), 2003 (4): 634-637. | 
| 51 | 焦蓉, 何鹏飞, 王戈, 等. 内生菌YN201728的定殖能力及其防治烟草白粉病的效果研究[J]. 核农学报, 2020(4): 721-728. | 
| 52 | 孙真, 郑亮, 邱浩斌. 植物根际促生细菌定殖研究进展[J]. 生物技术通报,2017, 33(2): 8-15. | 
| 53 | 蔡学清. 内生枯草芽孢杆菌BS-2(Bacillus subtilis)在植物体内的定殖及促生作用[D]. 福州:福建农林大学,2005. | 
| 54 | 张亚旭, 刘紫烟. 荧光PCR扩增相关技术[J]. 中国生物化学与分子生物学报, 2021, 37(7): 890-899. | 
| 55 | SILVA M F D, GONÇALVES M C, BRITO M D S, et al.. Reference genes for gene expression studies targeting sugarcane infected with sugarcane mosaic virus[J/OL].BMC Res. Notes, 2019, 12(1): 149[2022-12-05]. . | 
| 56 | MORALES-CEDENO L R, OROZCO-MOSQUEDA M D, LOEZA-LARA P D, et al.. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives[J/OL]. Microbiol. Res., 2021, 242:126612[2022-12-05]. . | 
| 57 | FAN B, WANG C, SONG X F, et al.. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol[J/OL]. Front. Microbiol., 2018, 9:2491[2022-12-05]. . | 
| 58 | 程媛媛, 雍彬, 张超, 等. 华重楼内生菌抗菌肽的分离纯化及其特性[J]. 微生物学报, 2009, 49(4): 498-503. | 
| 59 | 陈炜. 植物内生细菌BS-2和TB2在荔枝体内的定殖及对荔枝霜霉病的防治[D]. 福州:福建农林大学, 2009. | 
| 60 | GU S H, WEI Z, SHAO Z Y, et al.. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat. Microbiol., 2020, 5(8): 1002-1010. | 
| 61 | TZIPILEVICH E, RUSS D, DANGL J L, et al.. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria[J]. Cell Host Microbe., 2021, 29(10): 1507-1520. | 
| 62 | 喻江, 于镇华, 刘晓冰, 等. 植物根组织内生细菌多样性及其促生作用[J]. 中国农学通报, 2015, 31(13): 169-175. | 
| 63 | VANDANA U K, RAJKUMARI J, SINGHA L P, et al.. The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion[J/OL]. Biol. Basel, 2021, 10(2): 101[2022-12-05]. . | 
| 64 | WANG J, ZHANG X F, LING W T, et al.. Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China[J]. Chemosphere, 2017, 168: 976-987. | 
| 65 | WAIGI M G, WANG J, YANG B, et al.. Endophytic bacteria in planta organopollutant detoxification in crops[J]. Rev. Environ. Contam. Toxicol. ,2020,252: 1-50. | 
| 66 | LIU J, ZHANG Z M, SHENG Y H, et al.. Phenanthrene-degrading bacteria on root surfaces: a natural defense that protects plants from phenanthrene contamination[J]. Plant Soil, 2018, 425(1-2): 335-350. | 
| 67 | LIU L H, YUAN T, ZHANG J Y, et al.. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates[J/OL]. Sci. Total Environ., 2022, 806(1): 150310[2022-12-05]. . | 
| 68 | ZHU X Z, WANG W Q, SUN K, et al.. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination[J]. Int. J. Phytoremed., 2017, 19(8): 718-724. | 
| 69 | ABDOU R, ALQAHTANI A M, ATTIA G H. Anticancer natural products from Aspergillus neoniger, an endophyte of Ficus carica [J]. Bull. Nat. Res. Centre,2021, 45(1): 1-6. | 
| 71 | PACHÚ J K S, MACEDO F C O, SILVA F B D, et al.. Imidacloprid-mediated stress on non-Bt and Bt cotton, aphid and ladybug interaction: approaches based on insect behaviour, fluorescence, dark respiration and plant electrophysiology[J/OL].Chemosphere, 2021, 263: 127561[2022-12-05]. . | 
| 72 | YA L, QI W, LU W, et al.. Increased growth and root Cu accumulation of sorghum sudanense by endophytic Enterobacter sp. K3-2: implications for sorghum sudanense biomass production and phytostabilization[J]. Ecotoxicol. Environ. Safety, 2016, 124: 163-168. | 
| [1] | HOU Xu, ZHANG Guoqing, HU Xiao, YAN Lichun, LIU Yueping*. Progress on Biocontrol Endophytes in Fruit Trees [J]. Curr. Biotech., 2017, 7(2): 149-154. | 
| [2] | MA Li-li1,2, SONG Pei-yong1*. Progress on Biodiversity of Taxol-producing Microorganisms [J]. Curr. Biotech., 2016, 6(6): 462-468. | 
| [3] | WU Zhong-hong1, DU Juan2, WANG Gang-xia3, LI Xue-ping4, PENG Xin-yuan3. Research Advance on Plant Endophytes in Fruit and Vegetable Preservation [J]. Curr. Biotech., 2013, 3(6): 399-402. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||