| 1 | 梁计陵, 谢金凤, 王岑依, 等. microRNA在衰老性肌萎缩和运动干预中的调节作用[J]. 生理学报, 2020, 72(5): 667-676. | 
																													
																							| 2 | HOFFMANN C, WEIGERT C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations[J]. Cold Spring Harb., 2017, 7(11): 1-22. | 
																													
																							| 3 | VAN H G. Cytokines: muscle protein and amino acid metabolism[J]. Curr. Opin. Clin. Nutr. Metab. Care., 2012, 15(1): 85-91. | 
																													
																							| 4 | COHEN S, NATHAN J A, GOLDBERG A L. Muscle wasting in disease: molecular mechanisms and promising therapies[J]. Nat. Rev. Drug Discov., 2015, 14(1): 58-74. | 
																													
																							| 5 | WANG Y, LIU Q, QUAN H, et al.. Nutraceuticals in the prevention and treatment of the muscle atrophy[J]. Nutrients, 2021, 13(6): 1-36. | 
																													
																							| 6 | YIN L, LI N, JIA W, et al.. Skeletal muscle atrophy: from mechanisms to treatments[J/OL]. Pharmacol. Res., 2021, 172: 105807[2022-05-18]. . | 
																													
																							| 7 | KUNZ H E, DORSCHNER J M, BERENT T E, et al.. Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting[J]. J. Biol. Chem., 2020, 295(51): 17441-17459. | 
																													
																							| 8 | MALISZEWSKA K, ADAMSKA-PATRUNO E, KRĘTOWSKI A. The interplay between muscle mass decline, obesity, and type 2 diabetes[J]. Pol. Arch. Intern. Med., 2019, 129(11): 809-816. | 
																													
																							| 9 | LI Q, WU J, HUANG J, et al.. Paeoniflorin ameliorates skeletal muscle atrophy in chronic kidney disease via AMPK/SIRT1/PGC-1α-mediated oxidative stress and mitochondrial dysfunction[J/OL]. Front. Pharmacol., 2022, 13: 859723[2022-05-18]. . | 
																													
																							| 10 | ROY B, CURTIS M E, FEARS L S, et al.. Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy[J/OL]. Front. Physiol., 2016, 7: 439[2022-05-18]. . | 
																													
																							| 11 | TAKEMOTO Y, FUKADA S I. Molecular mechanism maintaining muscle satellite cells and the roles in sarcopenia[J]. Clinical. Calcium, 2017, 27(3): 339-344. | 
																													
																							| 12 | BRAY G A. Obesity is a chronic, relapsing neurochemical disease[J]. Int. J. Obes. (Lond), 2004, 28(1): 34-38. | 
																													
																							| 13 | ZHANG L, WANG Z, WANG X, et al.. Prevalence of overweight and obesity in China: results from a cross-sectional study of 441 thousand adults, 2012-2015[J]. Obes. Res. Clin. Pract., 2020, 14(2): 119-126. | 
																													
																							| 14 | 国家卫生健康委疾病预防控制局.中国居民营养与慢性病状况报告[M]. 北京:人民卫生出版社, 2021年. | 
																													
																							| 15 | LIPINA C, HUNDAL H S. Lipid modulation of skeletal muscle mass and function[J]. J. Cachexia Sarcopenia Muscle, 2017, 8(2): 190-201. | 
																													
																							| 16 | JUNG H W, KANG A N, KANG S Y, et al.. The root extract of Pueraria lobata and its main compound, puerarin, prevent obesity by increasing the energy metabolism in skeletal muscle[J]. Nutrients, 2017, 9(1): 1-13. | 
																													
																							| 17 | CHOI W H, SON H J, JANG Y J, et al.. Apigenin ameliorates the obesity-induced skeletal muscle atrophy by attenuating mitochondrial dysfunction in the muscle of obese mice[J/OL]. Mol. Nutr. Food Res., 2017, 61:1700218[2022-05-18]. . | 
																													
																							| 18 | KHALIL R. Ubiquitin-proteasome pathway and muscle atrophy[J]. Adv. Exp. Med. Biol., 2018, 1088: 235-248. | 
																													
																							| 19 | XU G, JAFFREY S R. Proteomic identification of protein ubiquitination events[J]. Biotechnol Genet. Eng. Rev., 2013, 29(1): 73-109. | 
																													
																							| 20 | ABRIGO J, RIVERA J C, ARAVENA J, et al.. High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis[J/OL]. Oxid. Med. Cell Longev., 2016, 2016: 9047821[2022-05-18]. . | 
																													
																							| 21 | BOLLINGER L M, POWELL J J, HOUMARD J A, et al.. Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux[J]. Obesity, 2015, 23(6): 1185-1193. | 
																													
																							| 22 | MASIERO E, SANDRI M. Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles[J]. Autophagy, 2010, 6(2): 307-309. | 
																													
																							| 23 | MIZUSHIMA N, KUMA A. Autophagosomes in GFP-LC3 transgenic mice[J]. Methods Mol. Biol., 2008, 445: 119-124. | 
																													
																							| 24 | JOKL E J, BLANCO G. Disrupted autophagy undermines skeletal muscle adaptation and integrity[J]. Mamm. Genome., 2016, 27(11-12): 525-537. | 
																													
																							| 25 | HAN S, CUI C, ZHAO X, et al.. Filamin C regulates skeletal muscle atrophy by stabilizing dishevelled-2 to inhibit autophagy and mitophagy[J]. Mol. Ther. Nucl. Acids, 2022, 27: 147-164. | 
																													
																							| 26 | MASIERO E, AGATEA L, MAMMUCARI C, et al.. Autophagy is required to maintain muscle mass[J]. Cell Metab., 2009, 10(6): 507-515. | 
																													
																							| 27 | FAN Z, XIAO Q. Impaired autophagic flux contributes to muscle atrophy in obesity by affecting muscle degradation and regeneration[J]. Biochemistry, 2020, 525(2): 462-468. | 
																													
																							| 28 | CHO D K, CHOI D H, CHO J Y. Effect of treadmill exercise on skeletal muscle autophagy in rats with obesity induced by a high-fat diet[J]. J. Nutr. Biochem., 2017, 21(3): 26-34. | 
																													
																							| 29 | CAMPBELL T L, MITCHELL A S, MCMILLAN E M, et al.. High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle[J]. Exp. Biol. Med., 2015, 240(5): 657-668. | 
																													
																							| 30 | HERRENBRUCK A R, BOLLINGER L M. Role of skeletal muscle autophagy in high-fat-diet-induced obesity and exercise[J]. Nutr. Rev., 2020, 78(1): 56-64. | 
																													
																							| 31 | ZHOU J C, WANG J L, REN H Z, et al.. Autophagy plays a double-edged sword role in liver diseases[J]. J. Physiol. Biochem., 2022, 78(1): 9-17. | 
																													
																							| 32 | LAPLANTE M, SABATINI D M. mTOR signaling in growth control and disease[J]. Cell, 2012, 149(2): 274-293. | 
																													
																							| 33 | HAY N, SONENBERG N. Upstream and downstream of mTOR[J]. Genes. Dev., 2004, 18(16): 1926-1945. | 
																													
																							| 34 | YOON M S. mTOR as a key regulator in maintaining skeletal muscle mass[J/OL]. Front. Physiol., 2017, 8: 788[2022-05-18]. . | 
																													
																							| 35 | KUBICA N, BOLSTER D R, FARRELL P A, et al.. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bϵ mRNA in a mammalian target of rapamycin-dependent manner[J]. J. Biol. Chem., 2005, 280(9): 7570-7580. | 
																													
																							| 36 | SUN Y N, HUANG J Q, CHEN Z Z, et al.. Amyotrophy induced by a high-fat diet is closely related to inflammation and protein degradation determined by quantitative phosphoproteomic analysis in skeletal muscle of C57BL/6 J mice[J]. J. Nutr., 2020, 150(2): 294-302. | 
																													
																							| 37 | LEE S, KIM M B, KIM C, et al.. Whole grain cereal attenuates obesity-induced muscle atrophy by activating the PI3K/Akt pathway in obese C57BL/6N mice[J]. Food Sci. Biotechnol., 2018, 27(1): 159-168. | 
																													
																							| 38 | BURNETT P E, BARROW R K, COHEN N A, et al.. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1[J]. Proc. Natl. Acad. Sci. USA, 1998, 95(4): 1432-1437. | 
																													
																							| 39 | FANG Y, VILELLA-BACH M, BACHMANN R, et al.. Phosphatidic acid-mediated mitogenic activation of mTOR signaling[J]. Science, 2001, 294(5548): 1942-1945. | 
																													
																							| 40 | MCKINNELL I W, RUDNICKI M A. Molecular mechanisms of muscle atrophy[J]. Cell, 2004, 119(7): 907-910. | 
																													
																							| 41 | CHENG T L, LIN Z Y, LIAO K Y, et al.. Magnesium lithospermate B attenuates high-fat diet-induced muscle atrophy in C57BL/6J mice[J/OL]. Nutrients, 2021, 14(1):104[2022-05-18] . | 
																													
																							| 42 | BEHARRY A W, SANDESARA P B, ROBERTS B M, et al.. HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy[J]. J. Cell Sci., 2014, 127(Pt7): 1441-1453. | 
																													
																							| 43 | RODRIGUEZ J, VERNUS B, CHELH I, et al.. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways[J]. Cell. Mol. Life Sci., 2014, 71(22): 4361-4371. | 
																													
																							| 44 | REBBAPRAGADA A, BENCHABANE H, WRANA J L, et al.. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis[J]. Mol. Cell Biol., 2003, 23(20): 7230-7242. | 
																													
																							| 45 | 张凤奇, 庄朋伟, 林映雪, 等. 骨骼肌萎缩信号通路的研究进展[J]. 现代药物与临床, 2013, 28(4): 624-627. | 
																													
																							| 46 | KUMAGAI H, COELHO A R, WAN J, et al.. MOTS-c reduces myostatin and muscle atrophy signaling[J/OL]. Am. J. Physiol. Endocrinol., 2021, 320(4): E680-E690[2022-05-18]. . | 
																													
																							| 47 | DONG J, DONG Y, DONG Y, et al.. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues[J]. Int. J. Obes., 2016, 40(3): 434-442. | 
																													
																							| 48 | AMOR M, ITARIU B K, MORENO-VIEDMA V, et al.. Serum myostatin is upregulated in obesity and correlates with insulin resistance in humans[J]. Exp. Clin. Endocrinol. Diabetes, 2019, 127(8): 550-556. | 
																													
																							| 49 | TANAKA M, MASUDA S, YAMAKAGE H, et al.. Role of serum myostatin in the association between hyperinsulinemia and muscle atrophy in Japanese obese patients[J]. Diabetes Res. Clin. Pract., 2018, 142: 195-202. | 
																													
																							| 50 | GOODMAN M N. Interleukin-6 induces skeletal muscle protein breakdown in rats[J]. Proc. Soc. Exp. Biol. Med., 1994, 205(2): 182-185. | 
																													
																							| 51 | DE BENEDETTI F, ALONZI T, MORETTA A, et al.. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation[J]. J. Clin. Invest., 1997, 99(4): 643-650. | 
																													
																							| 52 | RUI L, YUAN M, FRANTZ D, et al.. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2[J]. J. Biol. Chem., 2002, 277(44): 42394-42398. | 
																													
																							| 53 | JOHNSON D E, O'KEEFE R A, GRANDIS J R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat. Rev. Clin. Oncol., 2018, 15(4): 234-248. | 
																													
																							| 54 | PELLEGRINELLI V, ROUAULT C, RODRIGUEZ-CUENCA S, et al.. Human adipocytes induce inflammation and atrophy in muscle cells during obesity[J]. Diabetes, 2015, 64(9): 3121-3134. | 
																													
																							| 55 | ANDRICH D E, OU Y, MELBOUCI L, et al.. Altered lipid metabolism impairs skeletal muscle force in young rats submitted to a short-term high-fat diet[J/OL]. Front. Physiol., 2018, 9: 1327[2022-07-04]. . | 
																													
																							| 56 | ANDRICH D E, MELBOUCI L, OU Y, et al.. A short-term high-fat diet alters glutathione levels and IL-6 gene expression in oxidative skeletal muscles of young rats[J/OL]. Front. Physiol., 2019, 10: 372[2022-07-04]. . | 
																													
																							| 57 | COLLINS R A, GROUNDS M D. The role of tumor necrosis factor-alpha (TNF-alpha) in skeletal muscle regeneration. Studies in TNF-alpha(-/-) and TNF-alpha(-/-)/LT-alpha(-/-) mice[J]. J. Histochem. Cytochem., 2001, 49(8): 989-1001. | 
																													
																							| 58 | HOU L, JIANG F, HUANG B, et al.. Dihydromyricetin resists inflammation-induced muscle atrophy via ryanodine receptor-CaMKK-AMPK signal pathway[J]. J. Cell Mol. Med., 2021, 25(21): 9953-9971. | 
																													
																							| 59 | CHEN Y, QIAN Q, YU J. Carbenoxolone ameliorates insulin sensitivity in obese mice induced by high fat diet via regulating the IκB-α/NF-κB pathway and NLRP3 inflammasome[J/OL]. Biomed., 2019, 115: 108868[2022-05-18]. . | 
																													
																							| 60 | KIM K H, JEONG Y T, OH H, et al.. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine[J]. Nat. Med., 2013, 19(1): 83-92. | 
																													
																							| 61 | MORALES-SCHOLZ M G, SWINTON C, MURPHY R M, et al.. Autophagy is not involved in lipid accumulation and the development of insulin resistance in skeletal muscle[J]. Biochemistry, 2021, 534: 533-539. | 
																													
																							| 62 | 郑莉芳, 陈佩杰, 周永战, 等. 骨骼肌中脂肪沉积及其调节机制[J]. 生理学报, 2017, 69(3): 344-350. | 
																													
																							| 63 | RUAN J, ZHANG Y, YUAN J, et al.. A long-term high-fat, high-sucrose diet in Bama minipigs promotes lipid deposition and amyotrophy by up-regulating the myostatin pathway[J]. Mol. Cell Endocrinol., 2016, 425: 123-132. | 
																													
																							| 64 | VERPOORTEN S, SFYRI P, SCULLY D, et al.. Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis[J/OL]. Acta Physiol. (Oxford, England), 2020, 228(3): e13395[2022-05-18]. . | 
																													
																							| 65 | POWERS S K, WIGGS M P, DUARTE J A, et al.. Mitochondrial signaling contributes to disuse muscle atrophy[J]. Am. J. Physiol. Endocrinol. Metab., 2012, 303(1): 31-39. | 
																													
																							| 66 | ROMANELLO V, GUADAGNIN E, GOMES L, et al.. Mitochondrial fission and remodelling contributes to muscle atrophy[J]. Embo. J., 2010, 29(10): 1774-1785. | 
																													
																							| 67 | TEZZE C, ROMANELLO V, DESBATS M A, et al.. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence[J]. Cell Metab., 2017, 25(6): 1374-1389. |