| 1 | ABERG E, HOLST S, NEAGU A, et al.. Prenatal exposure to carbamazepine reduces hippocampal and cortical neuronal cell population in new-born and young mice without detectable effects on learning and memory[J/OL]. PLoS ONE, 2013, 8(11): e80497[2022-04-12]. . | 
																													
																							| 2 | SINGH K P, TRIPATHI N. Prenatal exposure to a novel antipsychotic quetiapine: impact on neuro-architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats[J]. Int. J. Dev. Neurosci., 2015, 42: 59-67. | 
																													
																							| 3 | ZEID D, KUTLU M G, GOULD T J. Differential effects of nicotine exposure on the hippocampus across lifespan[J]. Curr. Neuropharmacol., 2018,16(4): 388-402. | 
																													
																							| 4 | ZHENG Y, ZHANG Y M, TANG Z S, et al.. Spatial learning and memory deficits induced by prenatal glucocorticoid exposure depend on hippocampal CRHR1 and CXCL5 signaling in rats[J/OL]. J. Neuroinflam., 2021,18(1): 85[2022-04-12]. . | 
																													
																							| 5 | UNO H, LOHMILLER L, THIEME C, et al.. Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus[J]. Brain Res. Dev. Brain Res., 1990,53(2): 157-167. | 
																													
																							| 6 | WU T, HUANG Y, GONG Y, et al.. Treadmill exercise ameliorates depression-like behavior in the rats with prenatal dexamethasone exposure: the role of hippocampal mitochondria[J/OL]. Front Neurosci., 2019,13: 264[2022-04-12]. . | 
																													
																							| 7 | XU Y J, SHENG H, WU T W, et al.. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations[J]. FASEB J., 2018,32(8): 4258-4269. | 
																													
																							| 8 | MANSILLA A, JORDÁN-ÁLVAREZ S, SANTANA E, et al.. Molecular mechanisms that change synapse number[J]. J. Neurogenet., 2018,32(3): 155-170. | 
																													
																							| 9 | BATOOL S, RAZA H, ZAIDI J, et al.. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders[J]. J. Neurophysiol., 2019,121(4): 1381-1397. | 
																													
																							| 10 | BLANCO-SUÁREZ E, CALDWELL A L, ALLEN N J. Role of astrocyte-synapse interactions in CNS disorders[J]. J. Physiol., 2017,595(6): 1903-1916. | 
																													
																							| 11 | LASHLEY T, SCHOTT J M, WESTON P, et al.. Molecular biomarkers of Alzheimer's disease: progress and prospects[J/OL]. Dis. Model Mech., 2018,11(5):dmm031781[2022-04-12]. . | 
																													
																							| 12 | MÉNARD C, HODES G E, RUSSO S J. Pathogenesis of depression: Insights from human and rodent studies[J]. Neuroscience, 2016, 321: 138-162. | 
																													
																							| 13 | MONTEIRO P, FENG G. SHANK proteins: roles at the synapse and in autism spectrum disorder[J]. Nat. Rev. Neurosci., 2017,18(3): 147-157. | 
																													
																							| 14 | MAJUMDAR D, NEBHAN C A, HU L, et al.. An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons[J]. Mol. Cell Neurosci., 2011,46(3): 633-644. | 
																													
																							| 15 | WU Y, LV X, WANG H, et al.. Adaptor protein APPL1 links neuronal activity to chromatin remodeling in cultured hippocampal neurons[J]. J. Mol. Cell Biol., 2021,13(5): 335-346. | 
																													
																							| 16 | CROWTHER C A, MCKINLAY C J, MIDDLETON P, et al.. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes[J/OL]. Cochrane Database Syst. Rev., 2011(6):Cd003935[2022-04-12]. . | 
																													
																							| 17 | HSU M H, SHEEN J M, CHEN Y C, et al.. Rats with prenatal dexamethasone exposure and postnatal high-fat diet exhibited insulin resistance, and spatial learning and memory impairment: effects of enriched environment[J]. Neuroreport, 2020,31(3): 265-273. | 
																													
																							| 18 | MANOJLOVIĆ-STOJANOSKI M, NESTOROVIĆ N, PETKOVIĆ B, et al.. The effects of prenatal dexamethasone exposure and fructose challenge on pituitary-adrenocortical activity and anxiety-like behavior in female offspring[J/OL]. Tissue Cell, 2020,62: 101309[2022-04-12]. . | 
																													
																							| 19 | ZHANG S, HU S, DONG W, et al.. Prenatal dexamethasone exposure induces anxiety-and depressive-like behavior of male offspring rats through intrauterine programming of the activation of NRG1-ErbB4 signaling in hippocampal PV interneurons[J]. Cell Biol. Toxicol., 2021:1-22. | 
																													
																							| 20 | MOISIADIS V G, MATTHEWS S G. Glucocorticoids and fetal programming part 1: outcomes[J]. Nat. Rev. Endocrinol., 2014,10(7): 391-402. | 
																													
																							| 21 | FLORIO M, HUTTNER W B. Neural progenitors, neurogenesis and the evolution of the neocortex[J]. Development, 2014,141(11): 2182-2194. | 
																													
																							| 22 | KOUTSOUDAKI P N, PAPASTEFANAKI F, STAMATAKIS A, et al.. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury[J]. Glia, 2016,64(5): 763-779. | 
																													
																							| 23 | PARENT J M, MURPHY G G. Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis[J]. Epilepsia, 2008,49(l5): 19-25. | 
																													
																							| 24 | SMITH M R, READHEAD B, DUDLEY J T, et al.. Critical period plasticity-related transcriptional aberrations in schizophrenia and bipolar disorder[J]. Schizophr. Res., 2019,207: 12-21. | 
																													
																							| 25 | GEIS C, PLANAGUMÀ J, CARREÑO M, et al.. Autoimmune seizures and epilepsy[J]. J. Clin. Invest., 2019,129(3): 926-940. | 
																													
																							| 26 | GRANT S G N. Synapse diversity and synaptome architecture in human genetic disorders[J]. Hum. Mol. Genet., 2019,28(R2): 219-225. | 
																													
																							| 27 | KAMAT P K, KALANI A, RAI S, et al.. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's Disease: understanding the therapeutics strategies[J]. Mol. Neurobiol., 2016. 53(1): 648-661. | 
																													
																							| 28 | ZHANG Y, GONG F, LIU P, et al.. Effects of prenatal methamphetamine exposure on birth outcomes, brain structure, and neurodevelopmental outcomes[J]. Dev. Neurosci., 2021, 43(5): 271-280. | 
																													
																							| 29 | WHITE T J H. Brain development and stochastic processes during prenatal and early life: you can't lose it if you've never had it; but it's better to have it and lose it, than never to have had it at all[J]. J. Am. Acad. Child Adolesc. Psychiatry, 2019,58(11): 1042-1050. |