Current Biotechnology ›› 2021, Vol. 11 ›› Issue (4): 405-417.DOI: 10.19586/j.2095-2341.2021.0096
• Cutting-edge Technology • Next Articles
Received:2021-05-31
Accepted:2021-06-16
Online:2021-07-25
Published:2021-08-02
作者简介:林敏 E-mail:linmin@caas.cn
基金资助:CLC Number:
Min LIN. The Development Course and Industrialization Countermeasure of Agricultural Biological Breeding Technology[J]. Current Biotechnology, 2021, 11(4): 405-417.
林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417.
| 技术途径 | 作用机制 | 相关产品 |
|---|---|---|
| 植物基因工程 | 减少农药使用和碳排放;免耕增加土壤碳储量;高效利用土地和水资源 | 抗除草剂、抗虫和耐旱节水等转基因作物 |
| 人工高效固碳途径 | 直接利用二氧化碳合成生物大分子;大幅度增强光合效率;增加碳汇 | 单细胞固碳;C4水稻;人工叶片等 |
| 人工高效固氮途径 | 克服铵抑制、氧失活等天然固氮体系缺陷;节能节肥;减少碳排放 | 固氮微生物肥料;人工结瘤固氮粮食作物;自主固氮真核生物 |
| 生物质转化工程 | 将生物质转化为生物炭(biochar)并应用于土壤改良;增加土壤碳储量;生物质饲料化或肥料化 | 生物炭;生物饲料;生物肥料 |
| 动物基因工程 | 抗重大畜禽疫病;节省饲料;减少药物使用和碳排放 | 节粮高产抗病养殖动物;抗生素替代产品 |
| 农业细胞工厂 | 节能;高附加值;减少用水量、土地需求和碳排放 | 人造肉汉堡、人造奶冰淇淋等未来合成食品 |
Table 1 Biological breeding techniques and their products for carbon emission reduction and carbon sink increase
| 技术途径 | 作用机制 | 相关产品 |
|---|---|---|
| 植物基因工程 | 减少农药使用和碳排放;免耕增加土壤碳储量;高效利用土地和水资源 | 抗除草剂、抗虫和耐旱节水等转基因作物 |
| 人工高效固碳途径 | 直接利用二氧化碳合成生物大分子;大幅度增强光合效率;增加碳汇 | 单细胞固碳;C4水稻;人工叶片等 |
| 人工高效固氮途径 | 克服铵抑制、氧失活等天然固氮体系缺陷;节能节肥;减少碳排放 | 固氮微生物肥料;人工结瘤固氮粮食作物;自主固氮真核生物 |
| 生物质转化工程 | 将生物质转化为生物炭(biochar)并应用于土壤改良;增加土壤碳储量;生物质饲料化或肥料化 | 生物炭;生物饲料;生物肥料 |
| 动物基因工程 | 抗重大畜禽疫病;节省饲料;减少药物使用和碳排放 | 节粮高产抗病养殖动物;抗生素替代产品 |
| 农业细胞工厂 | 节能;高附加值;减少用水量、土地需求和碳排放 | 人造肉汉堡、人造奶冰淇淋等未来合成食品 |
| 1 | VASIL I K. A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops[J]. Plant Cell Rep., 2008,9:1423-1440. |
| 2 | DUVICK D N. Biotechnology in the 1930s: the development of hybrid maize[J]. Nat. Rev. Genet., 2001,2(1):69-74. |
| 3 | KHUSH G S. Green revolution: the way forward[J]. Nat. Rev. Genet., 2001,2(10):815-822. |
| 4 | VARSHNEY R K, BOHRA A, YU J, et al.. Designing future crops: genomics-assisted breeding comes of age[J]. Trends Plant Sci., 2021,26(6):631-649. |
| 5 | VAROTTO S, TANI E, ABRAHAM E, et al.. Epigenetics: possible applications in climate-smart crop breeding[J]. J. Exp. Bot., 2020,71(17):5223-5236. |
| 6 | 林敏. 转基因技术[M]. 北京:中国农业科学技术出版社,2020. |
| 7 | 农业农村部农业转基因生物安全管理办公室.转基因30年实践[M].北京:中国农业科学技术出版社,2012. |
| 8 | International Service for the Acquisition of Agri-biotech Applications (ISAAA). Global status of commercialized biotech/GM crops in 2018: biotech crops continue to help meet the challenges of increased population and climate change[R/OL]. ISAAA,2018[2021-06-18]. . |
| 9 | ZHAO Y S, METTE M F, REIF J C. Genomic selection in hybrid breeding[J]. Plant Breed., 2015, 134(1):1-10. |
| 10 | MEUWISSEN T, HAYES B, GODDARD M. Genomic selection: a paradigm shift in animal breeding[J]. Animal Front., 2016, 6(1):6-14. |
| 11 | GAO C. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021,184(6):1621-1635. |
| 12 | LEE K, UH K, FARRELL K. Current progress of genome editing in livestock[J]. Theriogenology, 2020,150:229-235. |
| 13 | ROELL M S, ZURBRIGGEN M D. The impact of synthetic biology for future agriculture and nutrition[J]. Curr. Opin. Biotechnol., 2020,61:102-109. |
| 14 | AVERY O, MACLEOD C, MCCARTY M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type Ⅲ[J]. J. Exp. Med.,1944,79(2): 137-158. |
| 15 | CHARGAFF E, ZAMENHOF S, GREEN C. Human desoxypentose nucleic acid: composition of human desoxypentose nucleic acid[J]. Nature,1950,165: 756-757 |
| 16 | WATSON J D, CRICK F H. Genetical implications of the structure of deoxyribonucleic acid[J]. Nature,1953,171(4361):964-967. |
| 17 | SZYMANSKI M, BARCISZEWSKI J. The path to the genetic code[J]. Biochim. Biophys. Acta Gen. Subj., 2017,1861(11):2674-2679. |
| 18 | COHEN S N, CHANG A C, BOYER H W, et al.. Construction of biologically functional bacterial plasmids in vitro[J]. Proc. Natl. Acad. Sci. USA,1973,70(11):3240-3244. |
| 19 | MORROW J F, COHEN S N, CHANG A C, et al.. Replication and transcription of eukaryotic DNA in Escherichia coli [J]. Proc. Natl. Acad. Sci. USA, 1974,71(5):1743-1747. |
| 20 | GORDON J W, RUDDLE F H. Integration and stable germ line transmission of genes injected into mouse pronuclei[J]. Science, 1981,214:1244-1246. |
| 21 | PETRI W. Transgenic organisms and development[J]. Nature,1982, 299:399-400, |
| 22 | PALMITER R, BRINSTER R, HAMMER R, et al.. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J]. Nature,1982,300:611-615. |
| 23 | HERNALSTEENS J P, FVAN VLIET, DE BEUCKELEER M, et al.. The Agrobacterium tumefaciens Ti plasmid as a host vector system for introducing foreign DNA in plant cells[J]. Nature, 1980,287:654-656. |
| 24 | OTTEN L, DE GREVE H, HERNALSTEENS J P, et al.. Mendelian transmission of genes introduced into plants by the Ti plasmids of Agrobacterium tumefaciens [J]. Mol. Gen. Genet., 1981,183(2):209-213. |
| 25 | FRALEY R T, ROGERS S G, HORSCH R B, et al.. Expression of bacterial genes in plant cells[J]. Proc. Natl. Acad. Sci. USA, 1983,80(15):4803-4807. |
| 26 | LAMPPA G, NAGY F, CHUA N H. Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco[J]. Nature,1985,316:750-752. |
| 27 | International Service for the Acquisition of Agri-biotech Applications (ISAAA). Global status of commercialized biotech/GM crops in 2019[J/OL]. ISAAA,2019[2021-06-18]. . |
| 28 | 朱祯, 刘哲铭, 李跃. 转基因技术的前世今生[J].人与自然圈,2018,114:1-16. |
| 29 | 陈章良. 农业生物技术研究及产业的现状和我国发展策略的几点考虑[J]. 中国农业科技导报,1999,1(1):18-20. |
| 30 | 林敏. 转基因争论需要科学探索理性讨论[J]. 人与生物圈,2018(6):72-75. |
| 31 | 陈君石. 助也媒体,误也媒体——点评2010中国十大健康事件[J]. 健康管理,2011(1):44-45. |
| 32 | 万建民. 我国转基因技术研究现状[J]. 民主与科学, 2015,5:20-21. |
| 33 | 农业部科技教育司. 中国农业科学技术70年[M]. 北京:中国农业出版社,2019. |
| 34 | 熊明民,杨亚岚,阮进学,等. 我国动物生物育种产业现状及发展策略探讨[J]. 农业生物技术学报,2016(8):1199-1206. |
| 35 | NESS J E, CARDAYRÉ S B, MINSHULL J, et al.. Molecular breeding: the natural approach to protein design[J]. Adv. Protein Chem., 2000,55:261-292. |
| 36 | MCPHERSON M J, HARRISON D J. Protease inhibitors and directed evolution: enhancing plant resistance to nematodes[J]. Biochem. Soc. Symp., 2001(68):125-142. |
| 37 | PELEMAN J D, VAN DER V J R. Breeding by design[J]. Trends Plant Sci., 2003,8(7):330-334. |
| 38 | WANG Y, XUE Y, LI J. Towards molecular breeding and improvement of rice in China[J]. Trends Plant Sci., 2005,12:610-614. |
| 39 | VARSHNEY R K, LANGRIDGE P, GRANER A. Application of genomics to molecular breeding of wheat and barley[J]. Adv. Genet., 2007,58:121-155. |
| 40 | 张启发. 绿色超级稻的培育的设想[J]. 分子植物育种,2005(5):601-602. |
| 41 | ZHANG Q.Strategies for developing Green Super Rice[J]. Proc. Natl. Acad. Sci. USA,2007,104(42):16402-16409. |
| 42 | 邓兴旺,王海洋,唐晓艳,等.杂交水稻育种将迎来新时代[J].中国科学:生命科学,2013,43:864-868. |
| 43 | MORRIS S H. EU biotech crop regulations and environmental risk: a case of the emperor's new clothes?[J]. Trends Biotechnol., 2007,25:2-6. |
| 44 | KALAITZANDONAKES N, ALSTON J M, BRADFORD K J. Compliance costs for regulatory approval of new biotech crops[J]. Nat. Biotechnol.,2007,25:509-511. |
| 45 | MARRIS E. Biotech crop rules get rewrite[J]. Nature,2007,449:9. |
| 46 | CLIVE J. A global overview of biotech (GM) crops: adoption, impact and future prospects[J]. GM Crops, 2010,1:8-12. |
| 47 | PRIVALLE L S, CHEN J, CLAPPER G, et al.. Development of an agricultural biotechnology crop product: testing from discovery to commercialization[J]. J. Agric. Food Chem., 2012,60:10179-10187. |
| 48 | JOHNSON J M, FRANZLUEBBERS A J, WEYERS S L, et al.. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environ. Pollut., 2007,150(1):107-124. |
| 49 | HARINDINTWALI J D, ZHOU J, MUHOZA B, et al.. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agricujlture[J/OL]. J. Environ. Manage., 2021,293(26):112856[2021-06-18]. . |
| 50 | GHOSH A, MISRA S, BHATTACHARYYA R, et al.. Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: a strategic appraisal for mitigation[J]. Environ. Sci. Pollut. Res. Int., 2020, 27(10):10160-10184. |
| 51 | 李新海,谷晓峰,马有志,等.农作物基因设计育种发展现状与展望[J]. 中国农业科技导报,2020,22(8):1-4. |
| 52 | TIAN Z, WANG J W, LI J, et al.. Designing future crops: challenges and strategies for sustainable agriculture[J]. Plant J., 2021,105(5):1165-1178. |
| 53 | VOIGT C A. Synthetic biology 2020-2030: six commercially-available products that are changing our world[J/OL]. Nat. Commun., 2020, 11(1): 6379[2021-06-18]. . |
| 54 | MEUWISSEN T H, HAYES B, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001,157:1819-1829. |
| 55 | 马宇浩,高爽,董向会,等. 基因编辑在农业动物中的应用进展[J].农业生物技术学报,2020,28(12):2230-2239. |
| 56 | ZHU H, LI C, GAO C. Applications of CRISPR-Cas in agriculture and plant biotechnology[J]. Nat. Rev. Mol. Cell Biol., 2020,21(11):661-677. |
| 57 | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat. Biotechnol., 2020,38(7):824-844. |
| 58 | 宗媛,高彩霞.碱基编辑系统研究进展[J]. 遗传,2019,41(9): 777-800. |
| 59 | LI C, ZHANG R, MENG X, et al.. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat. Biotechnol., 2020,38(7):875-882. |
| 60 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019,576(7785):149-157. |
| 61 | HUANG T K, PUCHTA H. Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering[J/OL]. Transgenic Res., 2021, doi: 10.1007/s11248-021-00238-x,[2021-06-18]. . |
| 62 | LIN Q, ZONG Y, XUE C, et al.. Prime genome editing in rice and wheat[J]. Nat. Biotechnol., 2020,38(5):582-585. |
| 63 | LIN Q, JIN S, ZONG Y, et al.. High-efficiency prime editing with optimized, paired pegRNAs in plants[J/OL]. Nat. Biotechnol., 2021, doi: 10.1038/s41587-021-00868-w[2021-06-18]. . |
| 64 | THAKORE P I, BLACK J B, HILTON I B, et al.. Editing the epigenome: technologies for programmable transcription and epigenetic modulation[J]. Nat. Methods, 2016,13:127-137. |
| 65 | NUÑEZ J K, CHEN J, POMMIER G C, et al.. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing[J]. Cell, 2021,184(9):2503-2519. |
| 66 | LV J, YU K, WEI J, et al.. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3[J]. Nat. Biotechnol., 2020,38(12):1397-1401. |
| 67 | WANG B, ZHU L, ZHAO B, et al.. Development of a haploid-inducer mediated genome editing system for accelerating maize breeding[J]. Mol. Plant, 2019,12(4):597-602. |
| 68 | LI T, YANG X, YU Y, et al.. Domestication of wild tomato is accelerated by genome editing[J]. Nat. Biotechnol., 2018,36:1160-1163. |
| 69 | YU H, LIN T, MENG X B, et al.. A route to de novo domestication of wild allotetraploid rice[J]. Cell,2021,184(4):1156-1170. |
| 70 | 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学: 生命科学, 2019,49:1543-1572. |
| 71 | VOIGT C A. Synthetic biology 2020-2030: six commercially-available products that are changing our world[J/OL]. Nat. Commun., 2020,11(1):6379[2021-06-18]. . |
| 72 | 吴杰, 赵乔. 合成生物学在现代农业中的应用与前景[J].植物生理学报,2020,56(11):2308-2316. |
| 73 | 朱新广,熊燕,阮梅花,等.光合作用合成生物学研究现状及未来发展策略[J].中国科学院院刊,2018,33:1239-1248. |
| 74 | SVON CAEMMERER, QUICK W P, FURBANK R T. The development of C₄ rice: current progress and future challenges[J]. Science, 2012,336(6089):1671-1672. |
| 75 | SCHULER M L, MANTEGAZZA O, WEBER A P M. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age[J]. Plant J., 2016,87(1):51-65 |
| 76 | BATISTA-SILVA W, FONSECA-PEREIRA P D A, MARTINS A O, et al.. Engineering improved photosynthesis in the era of synthetic biology[J/OL]. Plant Commun., 2020,1(2):100032[2021-06-18]. . |
| 77 | MACKINDER L C M, MEYER M T, METTLER-ALTMANN T, et al.. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle[J]. Proc. Natl. Acad. Sci. USA, 2016,113(21):5958-5963. |
| 78 | LONG B M, HEE W Y, SHARWOOD R E, et al.. Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts[J/OL]. Nat. Commun., 2018,9(1):3570[2021-06-18]. . |
| 79 | SOUTH P F, CAVANAGH A P, LIU H W, et al.. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J/OL]. Science, 2019,363(6422): eaat9077[2021-06-18]. . |
| 80 | 燕永亮, 王忆平, 林敏.生物固氮体系人工设计的研究进展[J].生物产业技术, 2019,1:34-40. |
| 81 | 林章凛,林敏.微生物和植物抗逆性元器件的合成生物学研究[J].生物产业技术,2013,4:7-17. |
| 82 | GOOD A. Toward nitrogen-fixing plants:a concerted research effort could yield engineered plants that can directly fix nitrogen[J]. Science,2018, 359(6378):869-870. |
| 83 | ROGERS C, OLDROYD G E D. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals[J]. J. Exp. Bot., 2014,65(8):1939-1946. |
| 84 | ORTIZ-MARQUEZ J C, NASCIMENTO M D O, CURATTI L. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories[J]. Metab. Eng., 2014,23:154-164. |
| 85 | ZHANG T, YAN Y, HE S, et al.. Involvement of the ammonium transporter AmtB in nitrogenase regulation and ammonium excretion in Pseudomonas stutzeri A1501[J]. Res. Microbiol., 2012,163:332-339. |
| 86 | ZHANG S, HEYES D J, FENG L L, et al.. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis[J]. Nature, 2019,574(7780):722-725. |
| 87 | ZHAN Y H, YAN Y L, et al.. The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proc. Natl. Acad. Sci. USA, 2016,113(30):4348-4356. |
| 88 | YANG J G, XIE X Q, YANG M X, et al.. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity[J]. Proc. Natl. Acad. Sci. USA, 2017,114(12):E2460-E2465. |
| 89 | YANG J G, XIE X Q, XIANG N, et al.. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proc. Natl. Acad. Sci. USA,2018,115(36):E8509-E8517. |
| 90 | SEXTON A E, GARNETT T, LORIMER J. Framing the future of food: The contested promises of alternative proteins[J/OL]. Environ. Plan. E Nat. Space, 2019,doi:10.1177/2514848619827009[2021-06-18]. . |
| 91 | STEPHENS N, DI SILVIO L, DUNSFORD I, et al.. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture[J]. Trends Food Sci. Technol., 2018,78:155-166. |
| 92 | BJÖRN W, PRZEMEK O, SEDEF K, et al.. Food for thought: the protein transformation[R/OL]. Boston Consulting Group, [2021-03-24]. . |
| [1] | Zhenhua XU, Shiwei GAO, Dawei GAO, Yanming YU, Haiying LIU, Hongtao WU, Shuli ZHANG, Zhongyi SUN, Xin WANG, Ping YAN. Biological Breeding Science and Technology Innovation for Seed Industry Development and Prospects [J]. Current Biotechnology, 2025, 15(4): 557-564. |
| [2] | Ziya GAO, Bingxin HUANGFU, Jiake LI, Fangqian LI, Zhihao MA, Yang PANG, Jingang LIANG, Xiaoyun HE. Risk Identification and Suggestions for the Industrialization of Biological Breeding——based on Grower Field Research [J]. Current Biotechnology, 2025, 15(3): 456-465. |
| [3] | Jing WANG, Haitao GUAN, Xiaolei ZHANG, Baohuai WANG, Baohai LIU, Hongtao WEN. Detection Dynamic and Development Tendency of Agricultural Gene Editing Products [J]. Current Biotechnology, 2024, 14(5): 712-723. |
| [4] | Kehao CAO, Junli ZHU, Huashan HE, Weizhuo XU. Impact of the Fourth Modifications of Patent Laws on Biotechnology Patent Applications and Industry Development [J]. Current Biotechnology, 2023, 13(5): 663-670. |
| [5] | Tingting LIU, Tao TONG, Kunlun HUANG. Research Progress and Safety Evaluation of Transgenic Corn [J]. Current Biotechnology, 2022, 12(4): 523-531. |
| [6] | Xing DANG, Binwei ZHI, Kehao CAO, Tingting LIU, Biao CHEN, Yuanjie DING. Patent Analysis on Genetically Modified Maize Biological Breeding Technology and Development Suggestions [J]. Current Biotechnology, 2022, 12(4): 614-622. |
| [7] | Min LIN, Bin YAO. Strengthening Innovation in Synthetic Biotechnology and Leading the Leapfrog Development of Modern Agriculture [J]. Current Biotechnology, 2022, 12(3): 321-324. |
| [8] | Chunyue ZHANG, Jiayang JIN, Yongjun QIU, Liqiang FAN, Liming ZHAO. Collision Between Tradition and Future: Technology and Application Progress in Food Fermentation Engineering [J]. Current Biotechnology, 2021, 11(4): 418-429. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
