生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 761-767.DOI: 10.19586/j.2095-2341.2024.0065
收稿日期:
2024-03-29
接受日期:
2024-05-20
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
翟翯
作者简介:
赵文昊 E-mail: 2023990048@cipuc.edu.cn;
基金资助:
Received:
2024-03-29
Accepted:
2024-05-20
Online:
2024-09-25
Published:
2024-10-22
Contact:
He ZHAI
摘要:
工作犬和相应工作用途的匹配性与其行为性状密切相关,犬的行为性状受到遗传与环境因素的双重影响,且遗传因素对犬的行为性状起到决定性作用,是犬种繁育的重点内容。已有研究发现一些犬基因的多态位点,如MAOB、COMT、TH、5-HTR2C、DRD2、GLT-1和GLAST等与犬的特定性情及行为性状显著相关,但仍有已被发现基因的具体功能及对犬行为性状的具体影响机制有待进一步研究。综述对已有犬基因与犬主要工作性状方面的研究进行了总结,并整合了分散性的研究论点,以期为后续从业人员的理论研究及进一步机制研究提供参考。
中图分类号:
赵文昊, 翟翯. 工作犬基因与主要行为性状关联性研究进展[J]. 生物技术进展, 2024, 14(5): 761-767.
Wenhao ZHAO, He ZHAI. Research Progress on the Relationship Between Genes and Main Behavioral Traits in Working Dogs[J]. Current Biotechnology, 2024, 14(5): 761-767.
1 | KIRKNESS E F, BAFNA V, HALPERN A L, et al.. The dog genome: survey sequencing and comparative analysis[J]. Science, 2003, 301(5641): 1898-1903. |
2 | 孙宁.犬基因组研究概况[J].中国工作犬业,2006(10):43. |
SUN N. Development of research on canine genome[J]. China Work. Dog, 2006(10): 43. | |
3 | CASADESUS G, COTMAN C W, HEAD E. The canine model of human aging and disease[J]. Adv. Alzheimer's Dis., 2011, 1: 15-38. |
4 | SUTTER N B, EBERLE M A, PARKER H G, et al.. Extensive and breed-specific linkage disequilibrium in Canis familiaris [J]. Genome Res., 2004, 14(12): 2388-2396. |
5 | SUTTERN B, OSTRANDERE A. Dog star rising: the canine genetic system[J]. Nat. Rev. Genet., 2004, 5(12): 900-910. |
6 | BOYKO A R, QUIGNON P, LI L, et al.. A simple genetic architecture underlies morphological variation in dogs[J/OL]. PLoS Biol., 2010, 8(8): e1000451[2024-07-22]. . |
7 | PATTERSON D F. Companion animal medicine in the age of medical genetics[J]. J. Vet. Intern. Med., 2000, 14(1): 1-9. |
8 | 马长书,叶俊华,杨前勇,等. COMT基因多态性及其与犬行为性状的关联性分析[C]//第十二届全国养犬学术研讨会,2007. |
9 | 李小慧,茆达干,徐汉坤,等.单胺氧化酶B单核苷酸多态性与幼犬工作行为性状的关联分析[J].南京农业大学学报,2007,30(3):105-109. |
LI X H, MAO D G, XU H K, et al.. Association between the canine monoamine oxidase B (MAOB) gene polymorphisms and traits of main working behaviors in puppies[J]. J. Nanjing Agric. Univ., 2007, 30(3): 105-109. | |
10 | LIM L C, GURLING H, CURTIS D, et al.. Linkage between tyrosine hydroxylase gene and affective disorder cannot be excluded in two of six pedigrees[J]. Am. J. Med. Genet., 1993, 48(4): 223-228. |
11 | MELONI R, LAURENT C, CAMPION D, et al.. A rare allele of a microsatellite located in the tyrosine hydroxylase gene found in schizophrenic patients[J]. C. R. Acad. Sci. Ⅲ-Vie, 1995, 318(7): 803-809. |
12 | MELONI R, LEBOYER M, BELLIVIER F, et al.. Association of manic-depressive illness with tyrosine hydroxylase microsatellite marker[J/OL]. Lancet, 1995, 345(8954): 932[2024-05-06]. . |
13 | THIBAUT F, RIBEYRE J M, DOURMAP N, et al.. Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia[J]. Schizophr. Res., 1997, 23(3): 259-264. |
14 | MACLEAN E L, SNYDER-MACKLER N, VONHOLDT B M, et al.. Highly heritable and functionally relevant breed differences in dog behaviour[J/OL]. Proc. Biol. Sci., 2019, 286(1912): 20190716[2024-05-06]. . |
15 | 吴常信.分子数量遗传学与动物育种[J/OL].遗传,1997(S1): 3[2024-05-06]. . |
WU C X. Molecular quantitative genetics and animal breeding[J/OL]. Hereditas, 1997(S1): 3[2024-05-06]. . | |
16 | 瞿华香,张玉烛,张岳,等.分子标记辅助选择育种研究进展[J/OL].作物研究,2008(S1):4[2024-05-06].. |
QU H X, ZHANG Y Z, ZHANG Y, et al.. Advances in molecular marker-assisted selection breeding[J/OL]. Crop Res., 2008(S1): 4[2024-05-06]. . | |
17 | 关淑艳,费建博,刘智博,等.分子标记辅助选择(MAS)在玉米抗逆育种中的应用[J].吉林农业大学学报,2018,40(4):399-407. |
GUAN S Y, FEI J B, LIU Z B, et al.. Application of molecular marker-assisted selection (MAS) in maize resistance breeding[J]. J. Jilin Agric. Univ., 2018, 40(4): 399-407. | |
18 | VISSCHER P M, HILL W G, WRAY N R. Heritability in the genomics era-concepts and misconceptions[J]. Nat. Rev. Genet., 2008, 9: 255-266. |
19 | SERPELL J A, DUFFY D L. Dog breeds and their behavior[M]// Domestic Dog Cognition and Behavior. Berlin, Heidelberg: Springer, 2014: 31-57. |
20 | SHIH J C. Molecular basis of human MAO A and B[J]. Neuropsychopharmacology, 1991, 4(1): 1-7. |
21 | SHIH J C. Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B[J]. Neurotoxicology, 2004, 25(1-2): 21-30. |
22 | SHIH J C, CHEN K. MAO-A and-B gene knock-out mice exhibit distinctly different behavior[J]. Neurobiology, 1999, 7(2): 235-246. |
23 | CASES O, SEIF I, GRIMSBY J, et al.. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA [J]. Science, 1995, 268(5218): 1763-1766. |
24 | BACH A W, LAN N C, JOHNSON D L, et al.. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties[J]. Proc. Natl. Acad. Sci. USA, 1988, 85(13): 4934-4938. |
25 | HASHIZUME C, SUZUKI M, MASUDA K, et al.. Molecular cloning of canine monoamine oxidase subtypes A (MAOA) and B (MAOB) cDNAs and their expression in the brain[J]. J. Vet. Med. Sci., 2003, 65(8): 893-898. |
26 | KUBINYI E, VAS J, HEJJAS K, et al.. Polymorphism in the tyrosine hydroxylase (TH) gene is associated with activity-impulsivity in German shepherd dogs[J/OL]. PLoS ONE, 2012, 7(1): e30271[2024-05-06]. . |
27 | MELONI R, ALBANÈSE V, RAVASSARD P, et al.. A tetranucleotide polymorphic microsatellite, located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatory element in vitro [J]. Hum. Mol. Genet., 1998, 7(3): 423-428. |
28 | RALEIGH M J, MCGUIRE M T, BRAMMER G L, et al.. Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys[J]. Brain Res., 1991, 559(2): 181-190. |
29 | ROTH B L. Multiple serotonin receptors: clinical and experimental aspects[J]. Ann. Clin. Psychiatry, 1994, 6(2): 67-78. |
30 | PARKS C L, ROBINSON P S, SIBILLE E, et al.. Increased anxiety of mice lacking the serotonin1A receptor[J]. Proc. Natl. Acad. Sci. USA, 1998, 95(18): 10734-10739. |
31 | RAMBOZ S, OOSTING R, AMARA D A, et al.. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder[J]. Proc. Natl. Acad. Sci. USA, 1998, 95(24): 14476-14481. |
32 | HEISLER L K, CHU H M, BRENNAN T J, et al.. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice[J]. Proc. Natl. Acad. Sci. USA, 1998, 95(25): 15049-15054. |
33 | BRUNNER D, BUHOT M C, HEN R, et al.. Anxiety, motor activation, and maternal-infant interactions in 5HT1B knockout mice[J]. Behav. Neurosci., 1999, 113(3): 587-601. |
34 | REISNERI R, MANNJ J, STANLEYM, et al.. Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non-aggressive dogs[J]. Brain Res., 1996, 714(1-2): 57-64. |
35 | HOLMES A, MURPHY D L, CRAWLEY J N. Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression[J]. Biol. Psychiat., 2003, 54(10): 953-959. |
36 | HOLMES A, YANG R J, LESCH K P, et al.. Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior[J]. Neuropsychopharmacology, 2003, 28(12): 2077-2088. |
37 | ASGHARI V, SANYAL S, BUCHWALDT S, et al.. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants[J]. J. Neurochem., 1995, 65(3): 1157-1165. |
38 | BLUM K, BRAVERMAN E R, WU S, et al.. Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors (SAB)[J]. Mol. Psychiatr., 1997, 2(3): 239-246. |
39 | GUASTELLA J, NELSON N, NELSON H, et al.. Cloning and expression of a rat brain GABA transporter[J]. Science, 1990, 249(4974): 1303-1306. |
40 | ROTHSTEIN J D, MARTIN L, LEVEY A I, et al.. Localization of neuronal and glial glutamate transporters[J]. Neuron, 1994, 13(3): 713-725. |
41 | SEAL R P, AMARA S G. Excitatory amino acid transporters: a family in flux[J]. Annu. Rev. Pharmacol. Toxicol., 1999, 39: 431-456. |
42 | OGATA N, HASHIZUME C, MOMOZAWA Y, et al.. Polymorphisms in the canine glutamate transporter-1 gene: identification and variation among five dog breeds[J]. J. Vet. Med. Sci., 2006, 68(2): 157-159. |
43 | 李德贵.犬主要行为性状及其相关基因的研究[D].武汉:华中农业大学,2007. |
44 | HASHIZUME C, MASUDA K, MOMOZAWA Y, et al.. Identification of an cysteine-to-arginine substitution caused by a single nucleotide polymorphism in the canine monoamine oxidase B gene[J]. J. Vet. Med. Sci., 2005, 67(2): 199-201. |
45 | 李小慧.犬主要行为性状及其相关基因的研究[D].南京:南京农业大学,2006. |
46 | 白静,马雪娜,陈舒婷,等.应用COMT基因SNP位点鉴别拉布拉多和金毛猎犬胆量行为的研究[J].实验动物科学,2021,38(1):29-34. |
BAI J, MA X N, CHEN S T, et al.. Study on the application of COMT gene SNP loci in the identification of the timid temperament of labrador and golden retriever[J]. Lab. Anim. Sci., 2021, 38(1): 29-34. | |
47 | BAI J, CHEN S, ZHOU Z, et al.. Association between TH/MAOB gene single nucleotide polymorphisms and excitability in labrador retrievers[J]. Anim. Genet., 2023, 54(4): 570-575. |
48 | TAKEUCHI Y, HASHIZUME C, CHON E M, et al.. Canine tyrosine hydroxylase (TH) gene and dopamine beta-hydroxylase (DBH) gene: their sequences, genetic polymorphisms, and diversities among five different dog breeds[J]. J. Vet. Med. Sci., 2005, 67(9): 861-867. |
49 | MYEONG H, JEOUNG D, KIM H, et al.. Genomic analysis and functional expression of canine dopamine D2 receptor[J]. Gene, 2000, 257(1): 99-107. |
50 | HARE B. Survival of the friendliest: Homo sapiens evolved via selection for prosociality[J]. Annu. Rev. Psychol., 2017, 68: 155-186. |
51 | HEKMAN J P, JOHNSON J L, EDWARDS W, et al.. Anterior pituitary transcriptome suggests differences in ACTH release in tame and aggressive foxes[J]. G3-Genes Genom.Genet., 2018, 8(3): 859-873. |
52 | FREEDMAN A H, SCHWEIZER R M, ORTEGA-DEL VECCHYO D, et al.. Demographically-based evaluation of genomic regions under selection in domestic dogs[J/OL]. PLoS Genet., 2016, 12(3): e1005851[2024-05-06]. . |
[1] | 杨江涛, 黄耀辉, 王志兴, 王旭静, 焦悦. 植物生物反应器研发应用现状及安全监管政策[J]. 生物技术进展, 2025, 15(4): 565-572. |
[2] | 王俞杰, 杨彭逸, 李杨, 李仪扬, 李中强, 隋宏书, 满增朔. 汞毒性机制及新型防治策略研究进展[J]. 生物技术进展, 2025, 15(4): 655-660. |
[3] | 董子涵, 邵金辉. SP140蛋白对几种肿瘤或感染相关基因表达调控和一些免疫性疾病的影响[J]. 生物技术进展, 2025, 15(4): 668-674. |
[4] | 邱冰月, 施家腾, 金静. siRNA基因治疗在肌腱损伤修复中的研究进展[J]. 生物技术进展, 2025, 15(3): 411-417. |
[5] | 张月秋, 傅芳奇, 赵桐桐, 陈子言, 裴欣瑶, 高芳瑞, 李佳岢, 李辉, 江晓丹, 王颢潜, 陈红. 转基因耐除草剂大豆LP012-1转化体普通PCR定性检测方法的研究[J]. 生物技术进展, 2025, 15(3): 466-475. |
[6] | 王智, 胡广, 付伟, 彭萱子, 张永江, 翟俊峰. 基于文献计量的转基因植物及其产品核酸检测技术发展态势分析[J]. 生物技术进展, 2025, 15(3): 476-485. |
[7] | 丁璇, 张祖英, 苏秀娟, 胡文冉. 通过辅助方法优化农杆菌介导的棉花胚尖遗传转化[J]. 生物技术进展, 2025, 15(3): 495-501. |
[8] | 朱媛智, 裴培, 刘帆, 何学佳, 王怡, 王珊. Otx2基因通过调节H3K27me3对Wnt通路的影响[J]. 生物技术进展, 2025, 15(3): 526-534. |
[9] | 李璐瑶, 吕宁, 翟永结, 张润, 严安心, 贾富全. 呼和浩特汉族人群Y-STR的遗传多态性分析[J]. 生物技术进展, 2025, 15(3): 544-554. |
[10] | 焦耀萱, 李敏, 屈昕雅, 刘恬伶, 生秀梅, 周晓祥. 噬菌体基因工程技术与应用研究进展[J]. 生物技术进展, 2025, 15(2): 189-200. |
[11] | 刘卓颖, 周晓今, 黄燕丽, 逄森. 玉米盐胁迫和MeJA处理下的转录组联合分析[J]. 生物技术进展, 2025, 15(2): 263-275. |
[12] | 张月秋, 傅芳奇, 张华, 陈一帆, 王晨尧, 蒋红叶, 李亚辉, 廖一尘, 王丹, 孙宇, 付伟, 陈红. 转基因耐除草剂大豆LP012-1转化体实时荧光定量PCR检测方法的研究[J]. 生物技术进展, 2025, 15(2): 276-286. |
[13] | 马含笑. qPCR法构建双菌发酵制氢中两菌动态监测标准曲线[J]. 生物技术进展, 2025, 15(2): 325-332. |
[14] | 王晓元, 柏锡, 王建胜, 崔洪志. 纤维改良转基因棉花的研究现状[J]. 生物技术进展, 2025, 15(1): 11-18. |
[15] | 董炅, 王世锋, 凯迪日耶·玉苏普, 詹建立, 阿布都热合曼·吐尔逊. 新疆2种不同海拔绵羊EPAS1基因多态性与血液生理指标关联分析[J]. 生物技术进展, 2025, 15(1): 119-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||