生物技术进展 ›› 2023, Vol. 13 ›› Issue (6): 853-862.DOI: 10.19586/j.2095-2341.2023.0096
收稿日期:
2023-07-27
接受日期:
2023-10-27
出版日期:
2023-11-25
发布日期:
2023-12-12
通讯作者:
刘成珍
作者简介:
李雨薇E-mail: 2684382240@qq.com;
基金资助:
Yuwei LI(), Jiashuo LYU, Yifan YU, Xiaohui LIU, Chengzhen LIU(
)
Received:
2023-07-27
Accepted:
2023-10-27
Online:
2023-11-25
Published:
2023-12-12
Contact:
Chengzhen LIU
摘要:
黄曲霉毒素是由多种曲霉属真菌产生的强致癌物,在多种恶劣环境中有极高的稳定性,该毒素分布广泛,与人类和动物接触可能性较大,因此也被认为是人类和动物最重要的饮食风险因素之一。此外,在降解黄曲霉毒素的过程中仍有可能会产生其他有毒物质,加之某些降解技术可能会破坏营养物质的结构,从而降低产品质量。黄曲霉毒素污染问题给全球卫生体系和食品工业造成了巨大负担。尽管降解黄曲霉毒素的方法多种多样,但仍未能找出一种比较完美的方法解决黄曲霉毒素的污染问题,因此寻求一种高效安全的黄曲霉毒素降解技术成为当代科研工作者研究的热点。综述了黄曲霉毒素的致毒机理、常用的降解方法及其优缺点,系统总结了生物法和新型纳米材料在黄曲霉毒素降解中的研究进展。目前使用生物技术手段和新型纳米材料降解黄曲霉毒素有着较高的生物安全性和高效性,因而未来可将黄曲霉毒素新型降解方法的研究聚焦于此,期望为科研工作者进一步开发黄曲霉毒素的降解方法提供助力。
中图分类号:
李雨薇, 吕家硕, 于一凡, 刘晓晖, 刘成珍. 黄曲霉毒素降解技术研究及应用进展[J]. 生物技术进展, 2023, 13(6): 853-862.
Yuwei LI, Jiashuo LYU, Yifan YU, Xiaohui LIU, Chengzhen LIU. Research and Application Progress in Degradation of Aflatoxin[J]. Current Biotechnology, 2023, 13(6): 853-862.
处理方法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
脉冲光辐照[ | 营养物质损失较少,环境影响小 | 降解毒素机制和降解产物毒性强弱不明 | 果汁、啤酒等饮品 |
电子束辐照[ | 加工时间短、效率高、热量低 | 辐照产物和降解产物毒性不明确 | 花生、玉米等固态食品 |
臭氧和紫外线照射联用[ | 原料中营养物质损失较少 | 降解产物毒性不明确 | 花生、玉米等固态食品 |
超声波处理[ | 对环境影响小 | 降解产物毒性尚不明确 | 花生、玉米等固态食品 |
表1 不同物理方法比较
Table 1 Comparison of different physical methods
处理方法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
脉冲光辐照[ | 营养物质损失较少,环境影响小 | 降解毒素机制和降解产物毒性强弱不明 | 果汁、啤酒等饮品 |
电子束辐照[ | 加工时间短、效率高、热量低 | 辐照产物和降解产物毒性不明确 | 花生、玉米等固态食品 |
臭氧和紫外线照射联用[ | 原料中营养物质损失较少 | 降解产物毒性不明确 | 花生、玉米等固态食品 |
超声波处理[ | 对环境影响小 | 降解产物毒性尚不明确 | 花生、玉米等固态食品 |
处理方法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
紫外线和过氧化氢联用技术[ | 降解速率快 | 食物的口感风味和营养价值会受到影响 | 固体食物 |
臭氧处理[ | 降解效率高 | 时间长、有毒性和爆炸性 | 新鲜农产品 |
电解氧化水[ | 有害化学物质残留少 | 安全性尚不明确 | 体积较小,比表面积足够大的物质 |
表2 不同化学方法比较
Table 2 Comparison of different chemicial methods
处理方法 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
紫外线和过氧化氢联用技术[ | 降解速率快 | 食物的口感风味和营养价值会受到影响 | 固体食物 |
臭氧处理[ | 降解效率高 | 时间长、有毒性和爆炸性 | 新鲜农产品 |
电解氧化水[ | 有害化学物质残留少 | 安全性尚不明确 | 体积较小,比表面积足够大的物质 |
1 | 徐静静, 闫培生, 王凯, 等. 一株抑制黄曲霉毒素的深海微杆菌的分离与鉴定[J]. 生物技术进展, 2015(3): 235-239. |
2 | AFSHAR P, SHOKRZADEH M, RAEISI S N, et al.. Aflatoxins biodetoxification strategies based on probiotic bacteria[J]. Toxicon, 2020, 178: 50-58. |
3 | GAO J, ZHAO L, LI J, et al.. Aflatoxin rapid detection based on hyperspectral with 1D-convolution neural network in the pixel level[J/OL]. Food Chem., 2021, 360: 129968[2023-10-26]. . |
4 | 肖伟, 闫培生. 海带渣微生物药肥对土壤中产毒真菌寄生曲霉的抑制作用研究[J]. 生物技术进展, 2015(3): 213-217. |
5 | MARCHESE S, POLO A, ARIANO A, et al.. Aflatoxin B1 and M1: biological properties and their involvement in cancer development[J/OL]. Toxins, 2018, 10(6): 214[2023-10-26]. . |
6 | WU Y, CHENG J H, SUN D W. Blocking and degradation of aflatoxins by cold plasma treatments: applications and mechanisms[J]. Trends Food Sci. Technol., 2021, 109: 647-661. |
7 | WANG Y, SHANG J, CAI M, et al.. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years[J/OL]. Crit. Rev. Food Sci. Nutr., 2022: 2095554[2023-10-26]. . |
8 | KHALIL O A A, HAMMAD A A, SEBAEI A S. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation[J]. Toxicon, 2021, 198: 111-120. |
9 | ATAKAN O, CANER C. Evaluation of different ozonation on aflatoxin degradation and physicochemical characteristics of hazelnuts[J/OL]. J. Food Proc. Preserv., 2021, 45(26): e15276[2023-10-26]. . |
10 | ISMAIL A, GONÇALVES B L, DE NEEFF D V, et al.. Aflatoxin in foodstuffs: occurrence and recent advances in decontamination[J]. Food Res. Int., 2018, 113: 74-85. |
11 | KARLOVSKY P, SUMAN M, BERTHILLER F, et al.. Impact of food processing and detoxification treatments on mycotoxin contamination[J]. Mycotoxin Res., 2016, 32(4): 179-205. |
12 | BEDARD L L, MASSEY T E. Aflatoxin B1-induced DNA damage and its repair[J]. Cancer Lett., 2006, 241(2): 174-183. |
13 | CORCUERA L A, VETTORAZZI A, ARBILLAGA L, et al.. Genotoxicity of aflatoxin B1 and ochratoxin A after simultaneous application of the in vivo micronucleus and comet assay[J]. Food Chem. Toxicol., 2015, 76: 116-124. |
14 | BAKHEET S A, ALHURAISHI A M, AL-HARBI N O, et al.. Alleviation of aflatoxin B1-induced genomic damage by proanthocyanidins via modulation of DNA repair[J]. J. Biochem. Mol. Toxicol., 2016, 30(11): 559-566. |
15 | LIU R, LU M, WANG R, et al.. Degradation of aflatoxin B1 in peanut meal by electron beam irradiation[J]. Int. J. Food Prop., 2018, 21(1): 891-900. |
16 | QI L, MA Y, CAI R, et al.. Degradation of aflatoxins in apple juice by pulsed light and the analysis of their degradation products[J/OL]. Food Contr., 2023, 148(12): 109648[2023-10-26]. . |
17 | LI H, XIONG Z, GUI D, et al.. Effect of ozonation and UV irradiation on aflatoxin degradation of peanuts[J/OL]. J. Food Proc. Preserv., 2019, 43(11): e13914[2023-10-26]. . |
18 | ALBERT J, MUÑOZ K. Kinetics of microbial and photochemical degradation of aflatoxin B1 in a sandy loam and clay soil[J/OL]. Sci. Rep., 2022, 12(1): 16849[2023-10-26]. . |
19 | LU X, NAIDIS G, LAROUSSI M, et al.. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J/OL]. Phys. Rep., 2016, 630: 003[2023-10-26]. . |
20 | HOJNIK N, MODIC M, WALSH J L, et al.. Unravelling the pathways of air plasma induced aflatoxin B(1) degradation and detoxification[J/OL]. J. Hazard. Mater., 2021, 403: 123593[2023-10-26]. . |
21 | NETO L, MILLAN D, PBRINCAT J, et al.. Impact of ultrasound decontamination on the microbial and sensory quality of fresh produce[J]. Food Contr., 2019, 104: 262-268. |
22 | LIU Y, LI M, LIU Y, et al.. Structures of reaction products and degradation pathways of aflatoxin B(1) by ultrasound treatment[J/OL]. Toxins, 2019, 11(9): 526[2023-10-26]. . |
23 | SHEN M, SINGH R. Detoxification of aflatoxins in foods by ultraviolet irradiation, hydrogen peroxide, and their combination-a review[J/OL]. LWT, 2021, 142(8): 110986[2023-10-26]. . |
24 | STRITTMATTER R J, YANG B, JOHNSON D A. A comprehensive investigation on the application of ozone in cooling water systems-correlation of bench-top, pilot scale and field application data[J]. Ozone Sci. Engin., 1993, 15: 47-80. |
25 | GUZEL-SEYDIM Z B, GREENE A K, SEYDIM A C. Use of ozone in the food industry[J]. LWT-Food Sci. Technol., 2004, 37: 453-460. |
26 | GONÇALVES A A. Ozone as a safe and environmentally friendly tool for the seafood industry[J]. J. Aquat. Food Prod. Technol., 2014, 25: 210-229. |
27 | AGRIOPOULOU S, KOLIADIMA A, KARAISKAKIS G, et al.. Kinetic study of aflatoxins' degradation in the presence of ozone[J]. Food Contr., 2016, 61: 221-226. |
28 | JACKOWSKA I, BOJANOWSKA M, STASZOWSKA K M, et al.. Low concentration short time ozonation of rapeseed seeds reduces the stability of the oil and content of some antioxidant components[J/OL]. Int. J. Food Sci. Technol., 2019, 54(12): 3175-3184. |
29 | WOMACK E D, BROWN A E, SPARKS D L. A recent review of non-biological remediation of aflatoxin-contaminated crops[J]. J. Sci. Food Agric., 2014, 94(9): 1706-1714. |
30 | VILLARREAL-BARAJAS T, VÁZQUEZ-DURÁN A, MÉNDEZ-ALBORES A. Effectiveness of electrolyzed oxidizing water on fungi and mycotoxins in food[J/OL]. Food Control, 2022, 131: 108454[2023-10-26]. . |
31 | ZHANG Q, XIONG K, TATSUMI E, et al.. Elimination of aflatoxin B1 in peanuts by acidic electrolyzed oxidizing water[J/OL]. Food Contr., 2012, 27(1): 16 [2023-10-26]. . |
32 | ABDOLMALEKI K, JAVANMARDI F, GAVAHIAN M, et al.. Emerging technologies in combination with probiotics for aflatoxins removal: an updated review[J/OL]. Int. J. Food Sci. Technol., 2022, 57: 5712-5721. |
33 | ZHANG Y, WANG P, KONG Q, et al.. Biotransformation of aflatoxin B(1) by Lactobacillus helviticus FAM22155 in wheat bran by solid-state fermentation[J/OL]. Food Chem., 2021, 341(Pt 1): 128180[2023-10-26]. . |
34 | REN X, BRANÀ M T, HAIDUKOWSKI M, et al.. Potential of Trichoderma spp. for biocontrol of aflatoxin-producing Aspergillus flavus [J/OL]. Toxins, 2022, 14(2): 86[2023-10-26]. . |
35 | DINI I, ALBORINO V, LANZUISE S, et al.. Trichoderma enzymes for degradation of aflatoxin B1 and ochratoxin A[J/OL]. Molecules, 2022, 27(12): 3959[2023-10-26]. . |
36 | YUE X, REN X, FU J, et al.. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218[J/OL]. Front. Microbiol., 2022, 13: 1003039[2023-10-26]. . |
37 | KUMAR V, BAHUGUNA A, LEE J S, et al.. Degradation mechanism of aflatoxin B1 and aflatoxin G1 by salt tolerant Bacillus albus YUN5 isolated from 'doenjang', a traditional Korean food[J/OL]. Food Res. Int., 2023, 165: 112479[2023-10-26]. . |
38 | LI W, LI W, ZHANG C, et al.. Study on the mechanism of aflatoxin B1 degradation by Tetragenococcus halophilus [J/OL]. LWT, 2023, 180: 114662[2023-10-26]. . |
39 | XUE G, QU Y, WU D, et al.. Biodegradation of aflatoxin B(1) in the Baijiu brewing process by Bacillus cereus [J/OL]. Toxins, 2023, 15(1): 65[2023-10-26]. . |
40 | SURESH G, CABEZUDO I, PULICHARLA R, et al.. Biodegradation of aflatoxin B(1) with cell-free extracts of Trametes versicolor and Bacillus subtilis [J]. Res. Vet. Sci., 2020, 133: 85-91. |
41 | LOI M, FANELLI F, ZUCCA P, et al.. Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and redox mediators[J/OL]. Toxins, 2016, 8(9): 245[2023-10-26]. . |
42 | BIAN L, ZHENG M, CHANG T, et al.. Degradation of aflatoxin B1 by recombinant laccase extracellular produced from Escherichia coli [J/OL]. Ecotoxicol. Environ. Saf., 2022, 244: 114062[2023-10-26]. . |
43 | LU T, FU C, XIONG Y, et al.. Biodegradation of aflatoxin B(1) in peanut oil by an amphipathic laccase-inorganic hybrid nanoflower[J]. J. Agric. Food Chem., 2023, 71(8): 3876-3884. |
44 | MDOMIJAN A, GAJSKI G, NOVAK JOVANOVIĆ I, et al.. In vitro genotoxicity of mycotoxins ochratoxin A and fumonisin B(1) could be prevented by sodium copper chlorophyllin: implication to their genotoxic mechanism[J]. Food Chem., 2015, 170: 455-462. |
45 | DOUSTI S, SADEGHI E, ROUHI M, et al.. Photocatalytic degradation of aflatoxin B1 in aqueous medium and non-alcoholic beer using chlorophyllin[J/OL]. Food Contr., 2023, 150(11): 109757[2023-10-26]. . |
46 | ALIREZALU K, PATEIRO M, YAGHOUBI M, et al.. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected mediterranean plants for use in meat products: a comprehensive review[J/OL]. Trends Food Sci. Technol., 2020, 100: 292-306. |
47 | CHEN X, JIA W, ZHU L, et al.. Recent advances in heterocyclic aromatic amines: an update on food safety and hazardous control from food processing to dietary intake[J]. Compr. Rev. Food Sci. Food Saf., 2020, 19(1): 124-148. |
48 | WANG X, JIA W. Bio-based material-edible rosemary induced biodegradation of aflatoxin B1 via altering endogenous protective enzymes signatures in animal-derived foods[J/OL]. J. Hazard. Mater., 2023, 458: 132021[2023-10-26]. . |
49 | BERISTAIN S, HERNANDEZ CARRANZA P, CID-PÉREZ T S, et al.. Antimicrobial activity of ginger (Zingiber officinale) and its application in food products[J]. Food Rev. Int., 2019, 35(41): 1-20. |
50 | BAHUGUNA A, KUMAR V, RAMALINGAM S, et al.. Zingiber officinale mediated aflatoxins cleanup in aqueous medium: kinetics, toxicity and cytoprotective effect[J/OL]. J. Clean. Prod., 2022, 381(7): 135155[2023-10-26]. . |
51 | HERNÁNDEZ-MELÉNDEZ D, SALAS-TÉLLEZ E, ZAVALA-FRANCO A, et al.. Inhibitory effect of flower-shaped zinc oxide nanostructures on the growth and aflatoxin production of a highly toxigenic strain of Aspergillus flavus link[J/OL]. Materials, 2018, 11(8): 1265[2023-10-26]. . |
52 | BODNAR M, KONIECZKA P, NAMIESNIK J. The properties, functions, and use of selenium compounds in living organisms[J]. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2012, 30(3): 225-252. |
53 | CHAUDHARY S, UMAR A, MEHTA S. Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications[J/OL]. Prog. Mater. Sci., 2016, 83: 270-329. |
54 | KHURANA A, TEKULA S, SAIFI M A, et al.. Therapeutic applications of selenium nanoparticles[J]. Biomed. Pharmacother., 2019, 111: 802-812. |
55 | HASSAN A, MANSOUR M, SAYED-ELAHL R, et al.. Influence of selenium nanoparticles on the effects of poisoning with aflatoxins[J/OL]. Adv. Anim. Vet. Sci., 2020, 8(S2): 64-73. |
56 | SAMUEL M S, MOHANRAJ K, CHANDRASEKAR N, et al.. Synthesis of recyclable GO/Cu(3)(BTC)(2)/Fe(3)O(4) hybrid nanocomposites with enhanced photocatalytic degradation of aflatoxin B1[J/OL]. Chemosphere, 2022, 291(Pt 2): 132684[2023-10-26]. . |
57 | SUN S, ZHAO R, XIE Y, et al.. Reduction of aflatoxin B(1) by magnetic graphene oxide/TiO2 nanocomposite and its effect on quality of corn oil[J/OL]. Food Chem., 2021, 343: 128521[2023-10-26]. . |
58 | SONG C, YANG J, WANG Y, et al.. Mechanisms and transformed products of aflatoxin B1 degradation under multiple treatments: a review[J]. Crit. Rev. Food Sci. Nutr., 2022: 2121910[2023-10-26]. . |
59 | ZHANG Y, SUN Y, MAN Y, et al.. Highly efficient adsorption and catalytic degradation of aflatoxin B1 by a novel porous carbon material derived from Fe-doped ZIF-8[J/OL]. Chem. Eng. J., 2022, 440(8): 135723[2023-10-26]. . |
60 | YANG X, PAN J, HU J, et al.. MOF-derived La-ZnFe2O4@Fe3O4@carbon magnetic hybrid composite as a highly efficient and recyclable photocatalyst for mycotoxins degradation[J/OL]. Chem. Engin. J., 2023, 467: 143381[2023-10-26]. . |
[1] | 张永红, 李岩异, 张卫婷. 整合位点分析技术的研究进展[J]. 生物技术进展, 2024, 14(1): 66-71. |
[2] | 徐静静,闫培生,王凯,马瑞,贾文文,Dunlap Christopher A. 一株抑制黄曲霉毒素的深海微杆菌的分离与鉴定[J]. 生物技术进展, 2015, 5(3): 235-239. |
[3] | 陈亮,郝东云. 转基因作物的食用与环境安全性问题及其对策[J]. 生物技术进展, 2011, 1(2): 81-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||