生物技术进展 ›› 2021, Vol. 11 ›› Issue (4): 476-482.DOI: 10.19586/j.2095-2341.2021.0053
收稿日期:
2021-04-19
接受日期:
2021-06-07
出版日期:
2021-07-25
发布日期:
2021-08-02
通讯作者:
李光鹏
作者简介:
高丽 E-mail: gaoli8905@163.com;
基金资助:
Li GAO1(), Lei YANG2, Guangpeng LI2(
)
Received:
2021-04-19
Accepted:
2021-06-07
Online:
2021-07-25
Published:
2021-08-02
Contact:
Guangpeng LI
摘要:
肌肉生长抑制素基因(myostatin,MSTN)是骨骼肌发育的负调节因子,在不同物种中具有高度保守性。自然突变或通过基因编辑技术对该基因进行操作,均可以获得肌肉异常发达的动物个体。研究表明,MSTN基因突变可以通过多种调控途径影响肌肉发育过程。因此,从成肌细胞增殖、分化、蛋白质合成分解代谢、组蛋白修饰以及巨噬细胞极化等5个方面对MSTN突变促进肌肉发育的机理进行综述,以期为农业动物育种新材料生产及重大恶病质的治疗提供借鉴。
中图分类号:
高丽, 杨磊, 李光鹏. Myostatin基因突变激发骨骼肌发育机制研究进展[J]. 生物技术进展, 2021, 11(4): 476-482.
Li GAO, Lei YANG, Guangpeng LI. Research Progress on the Mechanism of Skeletal Muscle Development Stimulated by Myostatin Gene Mutation[J]. Current Biotechnology, 2021, 11(4): 476-482.
1 | 李光鹏, 白春玲, 魏著英, 等. 黄牛Myostatin基因编辑研究[J]. 内蒙古大学学报(自然科学版), 2020, 51(1):12-32. |
2 | 王鑫, 高广琦, 魏著英, 等. 杂交F1代myostatin基因编辑肉牛的肉质特性分析[J]. 中国牛业科学, 2018, 44(3):1-7. |
3 | CLOP A, MARCQ F, TAKEDA H, et al.. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nat. Genet., 2006, 38:813-818. |
4 | MOSHER D S, QUIGNON P, BUSTAMANTE C D, et al.. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs[J/OL]. PLoS Genet., 2007, 3:e79[2021-06-10]. . DOI:10.1371/journal.pgen. 0030079 . |
5 | BI Y, HUA Z, LIU X, et al.. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP[J/OL]. Sci. Rep., 2016, 6:31729[2021-06-10]. . |
6 | WANG X, NIU Y, ZHOU J, et al.. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass[J]. Anim. Genet., 2018, 49(1):43-51. |
7 | LEE J, KIM D H, LEE K, et al.. Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide[J/OL]. Int. J. Mol. Sci., 2020, 21(4): 1504[2021-06-10]. . |
8 | 肖卫华, 陈佩杰, 刘宇. 巨噬细胞在骨骼肌急性损伤修复中的作用研究进展[J]. 中国运动医学杂志, 2014, 33(3):269-274. |
9 | TAYLOR W E, BHASIN S, ARTAZA J, et al.. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells[J]. Am. J. Physiol. Endocrinol. Metab., 2001, 280(2):E221-E228. |
10 | YABLONKA-REUVENI Z. Development and postnatal regulation of adult myoblasts[J]. Microsc. Res. Tech., 1995, 30(5):366-380. |
11 | 刘超武, 杨倬, 赵斌, 等. 逆转录病毒载体介导的RNA干扰稳定抑制肌肉生长抑制素GDF-8的表达[J]. 生物工程学报, 2008(2):250-255. |
12 | 高丽. Myostatin基因编辑牛肌肉卫星细胞成分化过程中DNA甲基化修饰的作用机制研究[D]. 呼和浩特:内蒙古大学, 博士学位论文, 2019. |
13 | PATEL A K, TRIPATHI A K, PATEL U A, et al.. Myostatin knockdown and its effect on myogenic gene expression program in stably transfected goat myoblasts[J]. In Vitro Cell. Dev. Biol. Anim., 2014, 50(7):587-596. |
14 | CARLSON M E, HSU M, CONBOY I M. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells[J]. Nature, 2008, 454(7203):528-532. |
15 | YANG W, ZHANG Y, LI Y, et al.. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1[J]. J. Biol. Chem., 2007, 282(6):3799-3808. |
16 | WANG K, TANG X, XIE Z, et al.. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Res., 2017, 26(6):799-805. |
17 | YU B, LU R, YUAN Y, et al.. Efficient TALEN-mediated myostatin gene editing in goats[J]. BMC Dev. Biol., 2016, 16(1):26-33. |
18 | KOLLIAS H D, MCDERMOTT J C. Transforming growth factor-beta and myostatin signaling in skeletal muscle[J]. J. Appl. Physiol., 2008, 104:579-587. |
19 | ZHU X, TOPOUZIS S, LIANG L F, et al.. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism[J]. Cytokine, 2004, 26(6):262-272. |
20 | ZHANG Y N, WANG Y J, BI Y L, et al.. CRISPR/Cas9-mediated sheep MSTN gene knockout and promote sSMSCs differentiation[J]. J. Cell. Biochem., 2019, 120:1794-1806. |
21 | GAO L, YANG M M, WEI Z Y, et al.. MSTN mutant promotes myogenic differentiation by increasing demethylase TET1 expression via the SMAD2/SMAD3 pathway[J]. Int. J. Biol. Sci., 2020, 16(8):1324-1334. |
22 | LI R, ZENG W, MA M, et al.. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs[J]. Transgenic Res., 2020, 29(1):149-163. |
23 | LIPINA C, KENDALL H, MCPHERRON A C, et al.. Mechanisms involved in the enhancement of mammalian target of rapamycin signaling and hypertrophy in skeletal muscle of myostatin-deficient mice[J]. FEBS Lett., 2010, 584:2403-2408. |
24 | ROMMEL C, BODINE S C, CLARKE B A, et al.. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways[J]. Nat. Cell Biol., 2001, 3(11):1009-1013. |
25 | MORISSETTE M R, COOK S A, BURANASOMBATI C, et al.. Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt[J]. Am. J. Physiol. Cell Physiol., 2009, 297(5):1124-1132. |
26 | TRENDELENBURG A U, MEYER A, ROHNER D, et al.. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size[J]. Am. J. Physiol. Cell Physiol., 2009, 296(6):1258-1270. |
27 | AMIROUCHE A, DURIEUX A C, BANZET S, et al.. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle[J]. Endocrinology, 2009, 150(1):286-294. |
28 | LIPINA C, KENDALL H, MCPHERRON A C, et al.. Mechanisms involved in the enhancement of mammalian target of rapamycin signaling and hypertrophy in skeletal muscle of myostatin-deficient mice[J]. FEBS Lett., 2010, 584(11):2403-2408. |
29 | SARTORI R, MILAN G, PATRON M, et al.. Smad2 and 3 transcription factors control muscle mass in adulthood[J]. Am. J. Physiol. Cell Physiol., 2009, 296(6):1248-1257. |
30 | LIU J, PAN M, HUANG D, et al.. Myostatin-1 inhibits cell proliferation by inhibiting the mTOR signal pathway and MRFs, and activating the ubiquitin-proteasomal system in skeletal muscle cells of Japanese flounder Paralichthys olivaceus [J/OL]. Cells, 2020, 9(11):2376[2021-06-10]. . |
31 | LIU D, QIAO X, GE Z, et al.. IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway[J/OL]. Skelet. Muscle, 2019, 9(1):8[2021-06-10]. . |
32 | HAN H Q, ZHOU X, MITCH W E, et al.. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential[J]. Int. J. Biochem. Cell Biol., 2013, 45(10):2333-2347. |
33 | GUTTRIDGE D C. A TGF-beta pathway associated with cancer cachexia[J]. Nat. Med., 2015, 21:1248-1249. |
34 | WANG Y, YAN X, LIU H, et al.. Effect of thermal manipulation during embryogenesis on the promoter methylation and expression of myogenesis-related genes in duck skeletal muscle[J]. J. Therm. Biol., 2019, 80:75-81. |
35 | JONES T I, KING O D, HIMEDA C L, et al.. Individual epigenetic status of the pathogenic D 4Z4 macrosatellite correlates with disease in facioscapulohumeral muscular dystrophy[J/OL]. Clin. Epigenet., 2015, 7:37[2021-06-10]. . |
36 | JONES T I, YAN C, SAPP P C, et al.. Identifying diagnostic DNA methylation profiles for facioscapulohumeral muscular dystrophy in blood and saliva using bisulfite sequencing[J/OL]. Clin. Epigenet., 2014, 6:23[2021-06-10]. . |
37 | LEMMERS R J, GOEMAN J J, VLIET P JVAN DER, et al.. Inter-individual differences in CpG methylation at D4Z4 correlate with clinical variability in FSHD1 and FSHD2[J]. Hum. Mol. Genet., 2015, 24:659-669. |
38 | MATTHEW G G, STUART S L, LAURIE A B, et al.. A chromatin landmark and transcription initiation at most promoters in human cells[J]. Cell, 2007,130(1):77-88. |
39 | WANG S, SUN Y, REN R, et al.. H3K27me3 depletion during differentiation promotes myogenic transcription in porcine satellite cells[J/OL]. Genes, 2019,10:231[2021-06-10]. . |
40 | ASP P, BLUM R, VETHANTHAM V, et al.. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(22): E149-E158. |
41 | CARETTI G, DI PADOVA M, MICALES B, et al.. The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation[J]. Genes Dev., 2004,18(21): 2627-2638. |
42 | WEI C, REN H, XU L, et al.. Signals of Ezh 2, Src, and Akt involve in myostatin-Pax7 pathways regulating the myogenic fate determination during the sheep myoblast proliferation and differentiation[J/OL]. PLoS ONE, 2015, 10(3): e0120956[2021-06-10]. . |
43 | BYRNE K, MCWILLIAM S, VUOCOLO T, et al.. Genomic architecture of histone 3 lysine 27 trimethylation during late ovine skeletal muscle development[J]. Anim. Genet., 2014, 45(3):427-438. |
44 | BAAR K. Epigenetic control of skeletal muscle fibre type[J]. Acta Physiol., 2010, 199:477-487. |
45 | GAO L, YANG M M, WANG X Q, et al.. MSTN knockdown decreases the trans-differentiation from myocytes to adipocytes by reducing Jmjd3 expression via the SMAD2/SMAD3 complex[J]. Biosci. Biotechnol. Biochem., 2019, 83(11):2090-2096. |
46 | JARVINEN T A, JARVINEN T L, KAARIAINEN M, et al.. Muscle injuries: biology and treatment[J]. Am. J. Sports Med., 2005, 33(5):745-764. |
47 | CHARGE S B, RUDNICKI M A. Cellular and molecular regulation of muscle regeneration[J]. Physiol. Rev., 2004, 84(1):209-238. |
48 | MURRAY P J, ALLEN J E, BISWAS S K, et al.. Macrophage activation and polarization: nomenclature and experimental guidelines[J]. Immunity, 2014, 41(1):14-20. |
49 | 郑莉芳, 陈佩杰, 周永战, 等. 老年骨骼肌再生能力受损的机制研究进展[J]. 生理科学进展, 2017, 48(5):393-397. |
50 | MARTINEZ F O, GORDON S. The M 1 and M2 paradigm of macrophage activation: time for reassessment[J/OL]. F1000Prime Rep., 2014, 6:13[2021-06-10]. . DOI: 10.12703/P6-13 . |
51 | MILLS C D. Anatomy of a discovery: M1 and M2 macrophages[J/OL]. Front. Immunol., 2015, 6:212[2021-06-10]. . |
52 | VILLALTA S A, NGUYEN H X, DENG B, et al.. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy[J]. Hum. Mol. Genet., 2009, 18(3):482-496. |
53 | TIDBALL J G, VILLALTA S A. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298(5):1173-1187. |
54 | TIDBALL J G. Mechanisms of muscle injury, repair, and regeneration[J]. Compr. Physiol., 2011, 1(4):2029-2062. |
55 | BOIS P R, GROSVELD G C. FKHR(FOXO1a) is required for myotube fusion of primary mouse myoblasts[J]. EMBO J., 2003, 22(5):1147-1157. |
56 | MATTHEW G M, DAVID L H, MARK P, et al.. Inhibition of myostatin signaling through Notch activation following acute resistance exercise[J/OL]. PLoS ONE, 2013, 8(7): e68743[2021-06-10]. . |
57 | ENDO T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion[J]. Bone, 2015, 80:2-13. |
58 | WOZNIAK A C, PILIPOWICZ O, YABLONKA-REUVENI Z, et al.. C-Met expression and mechanical activation of satellite cells on cultured muscle fibers [J]. J. Histochem. Cytochem., 2003, 51(11):1437-1445. |
59 | LIPINA C, KENDALL H, MCPHERRON A C, et al.. Mechanisms involved in the enhancement of mammalian target of rapamycin signaling and hypertrophy in skeletal muscle of myostatin-deficient mice[J]. FEBS Lett., 2010, 584:2403-2408. |
60 | TANG L, AN S, ZHANG Z, et al.. MSTN is a key mediator for low-intensity pulsed ultrasound preventing bone loss in hindlimb-suspended rats[J/OL]. Bone, 2021, 143:115610[2021-06-10]. . |
[1] | 乌格叶木日, 武建强. 结晶紫的抗肿瘤作用[J]. 生物技术进展, 2025, 15(2): 226-233. |
[2] | 朱旭, 张英楠, 马金法, 石莉红. Ptbp1在小鼠急性T淋巴细胞白血病中的作用研究[J]. 生物技术进展, 2025, 15(2): 341-348. |
[3] | 唐颖, 武建强. 肉苁蓉苯乙醇苷的抗肿瘤作用[J]. 生物技术进展, 2023, 13(3): 399-405. |
[4] | 黄琬玲, 朱文琦, 郭妮妮, 王楠, 任倩, 马小彤. NRG4基因对急性髓系白血病细胞增殖、凋亡及周期的影响[J]. 生物技术进展, 2023, 13(2): 305-310. |
[5] | 沈云燕, 邱琦. 褪黑素联合顺铂对宫颈癌HeLa细胞增殖、凋亡及侵袭的影响[J]. 生物技术进展, 2023, 13(2): 311-317. |
[6] | 郭婧雅, 张萍, 赵雨菡, 李梦杰, 黄昆仑, 仝涛. 肥胖诱导的骨骼肌萎缩机制研究进展[J]. 生物技术进展, 2022, 12(6): 861-868. |
[7] | 孙梦婷, 赵鹏翔, 仪杨, 王濛, 谢飞, ADZAVON Yao Mawulikplimi, 刘梦昱. 二甲双胍对胶质母细胞瘤细胞的抑制作用研究[J]. 生物技术进展, 2022, 12(6): 937-945. |
[8] | 肖金平, 李程, 曹云娣, 孙志坚, 康平, 兰晓梅. RET原癌基因与肿瘤相关性研究的进展现状[J]. 生物技术进展, 2022, 12(1): 57-62. |
[9] | 杨梦恬,袁菊懋. RTN4对于结肠癌细胞增殖的调控作用[J]. 生物技术进展, 2021, 11(2): 238-243. |
[10] | 谷明娟,高丽,王丽荣,李光鹏. 牛无角性状研究进展[J]. 生物技术进展, 2017, 7(3): 177-181. |
[11] | 路艳,陈莹,陆庆明,张颖,李朝晖,谢晓华 . 大鼠创伤失血性休克心肌巨噬细胞极化标志蛋白变化规律研究[J]. 生物技术进展, 2017, 7(3): 225-229. |
[12] | 杨芹,陈海琴,陈思,顾震南,张灏,陈永泉,陈卫. 高山被孢霉ω-3脂肪酸脱饱和酶基因在麦胚无细胞蛋白质合成系统中的表达[J]. 生物技术进展, 2016, 6(5): 346-351. |
[13] | 邓龙,周思,郭新东. 基于基因突变的基因工程抗体亲和力成熟研究[J]. 生物技术进展, 2014, 4(6): 400-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||