Current Biotechnology ›› 2024, Vol. 14 ›› Issue (4): 509-518.DOI: 10.19586/j.2095-2341.2024.0015
• Reviews • Next Articles
					
													Yijun LI1,2( ), Lin XIA1, Xiaobei YANG1, Xiaodong XIE1, Feng LI1, Jun YANG1, Qianji NING2, Mingzhu WU1(
), Lin XIA1, Xiaobei YANG1, Xiaodong XIE1, Feng LI1, Jun YANG1, Qianji NING2, Mingzhu WU1( )
)
												  
						
						
						
					
				
Received:2024-01-29
															
							
															
							
																	Accepted:2024-05-28
															
							
																	Online:2024-07-25
															
							
																	Published:2024-08-07
															
						Contact:
								Mingzhu WU   
													
        
               		李亦君1,2( ), 夏琳1, 杨小贝1, 谢小东1, 李锋1, 杨军1, 宁黔冀2, 武明珠1(
), 夏琳1, 杨小贝1, 谢小东1, 李锋1, 杨军1, 宁黔冀2, 武明珠1( )
)
                  
        
        
        
        
    
通讯作者:
					武明珠
							作者简介:李亦君E-mail: liyijun124@163.com;
				
							基金资助:CLC Number:
Yijun LI, Lin XIA, Xiaobei YANG, Xiaodong XIE, Feng LI, Jun YANG, Qianji NING, Mingzhu WU. Research Progress on Light-regulated Synthesis of Plant Polyphenols[J]. Current Biotechnology, 2024, 14(4): 509-518.
李亦君, 夏琳, 杨小贝, 谢小东, 李锋, 杨军, 宁黔冀, 武明珠. 光照调控植物多酚类物质合成的研究进展[J]. 生物技术进展, 2024, 14(4): 509-518.
| 中文全称 | 英文全称 | 缩写词 | 
|---|---|---|
| 苯丙氨酸解氨酶 | Phenylalanine ammonia lyase | PAL | 
| 反式肉桂酸4-羟化酶 | Trans-cinnamic acid 4- hydroxylase | C4H | 
| 咖啡酸3-O-甲基转移酶 | Caffeic acid 3-o-methyl transferase | COMT | 
| 咖啡酰辅酶A-甲基转移酶 | Caffeoyl-coa-methyl transferase | CCOAOMT | 
| 肉桂醇脱氢酶 | Innamyl alcohol dehydrogenase | CAD | 
| 过氧化物酶 | Peroxidase | POD | 
| 4-香豆酸辅酶A连接酶 | 4- Coumaric acid coenzyme a ligase | 4CL | 
| 查尔酮异构酶 | Chalcone isomerase | CHI | 
| 黄酮3'-羟化酶 | Flavanone-3-hydroxylase | F3H | 
| 二氢黄酮醇4-还原酶 | Dihydroflavonol 4-reductase | DFR | 
| UDP-葡萄糖类黄酮3-O-葡萄糖基转移酶 | UDP-glucose flavonoid 3-o-glucosyl transferase | UFGT | 
| 查尔酮合成酶 | Chalcone synthase | CHS | 
| 花青素合成酶 | Anthocyanidin synthase | ANS | 
| 花色素还原酶 | Anthocyanin reductase | ANR | 
| 类黄酮3',5'-羟化酶 | Flavonoid 3',5'-hydroxylase | F3'5'H | 
| 黄酮醇合成酶 | Flavonol synthase | FLS | 
| 阿魏酸5-羟化酶 | Ferulic acid 5- hydroxylase | F5H | 
| 羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl coa shikimate/quinate Hydroxycinnamoyltransferase | HCT | 
| 对香豆酰奎宁酸/莽草酸酯3-羟化酶 | ρ-Coumaroylester 3-hydroxylases | C3H | 
| 羟基肉桂酰辅酶A奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl-coa quinate hydroxy-cinnamoyl transferase | HQT | 
Table 1 The full name key genes in phenylpropanoid metabolic pathway
| 中文全称 | 英文全称 | 缩写词 | 
|---|---|---|
| 苯丙氨酸解氨酶 | Phenylalanine ammonia lyase | PAL | 
| 反式肉桂酸4-羟化酶 | Trans-cinnamic acid 4- hydroxylase | C4H | 
| 咖啡酸3-O-甲基转移酶 | Caffeic acid 3-o-methyl transferase | COMT | 
| 咖啡酰辅酶A-甲基转移酶 | Caffeoyl-coa-methyl transferase | CCOAOMT | 
| 肉桂醇脱氢酶 | Innamyl alcohol dehydrogenase | CAD | 
| 过氧化物酶 | Peroxidase | POD | 
| 4-香豆酸辅酶A连接酶 | 4- Coumaric acid coenzyme a ligase | 4CL | 
| 查尔酮异构酶 | Chalcone isomerase | CHI | 
| 黄酮3'-羟化酶 | Flavanone-3-hydroxylase | F3H | 
| 二氢黄酮醇4-还原酶 | Dihydroflavonol 4-reductase | DFR | 
| UDP-葡萄糖类黄酮3-O-葡萄糖基转移酶 | UDP-glucose flavonoid 3-o-glucosyl transferase | UFGT | 
| 查尔酮合成酶 | Chalcone synthase | CHS | 
| 花青素合成酶 | Anthocyanidin synthase | ANS | 
| 花色素还原酶 | Anthocyanin reductase | ANR | 
| 类黄酮3',5'-羟化酶 | Flavonoid 3',5'-hydroxylase | F3'5'H | 
| 黄酮醇合成酶 | Flavonol synthase | FLS | 
| 阿魏酸5-羟化酶 | Ferulic acid 5- hydroxylase | F5H | 
| 羟基肉桂酰辅酶A莽草酸/奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl coa shikimate/quinate Hydroxycinnamoyltransferase | HCT | 
| 对香豆酰奎宁酸/莽草酸酯3-羟化酶 | ρ-Coumaroylester 3-hydroxylases | C3H | 
| 羟基肉桂酰辅酶A奎尼酸羟基肉桂酰转移酶 | Hydroxycinnamoyl-coa quinate hydroxy-cinnamoyl transferase | HQT | 
| 1 | SALAMI M, HEIDARI B, BATLEY J, et al.. Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers[J/OL]. Front. Plant Sci., 2023, 14: 1249142[2024-06-09]. . | 
| 2 | HANO C, TUNGMUNNITHUM D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases[J/OL]. Medicines, 2020, 7(5): 26[2024-06-09]. . | 
| 3 | PUUPPONEN-PIMIÄ R, AURA A M, OKSMAN-CALDENTEY K M, et al.. Development of functional ingredients for gut health[J]. Trends Food Sci. Technol., 2002, 13(1): 3-11. | 
| 4 | 吴红艳. 杜仲叶多酚类物质提取工艺及抗氧化抗肿瘤研究[D]. 长沙: 湖南农业大学, 2020. | 
| 5 | 张花, 顾丽莉, 黄智华, 等. 烟草多酚的提取分离及分析研究进展[J]. 化学通报, 2021, 84(9): 900-905. | 
| ZHANG H, GU L L, HUANG Z H, et al.. Research progress in extraction, separation and analysis of polyphenols in tobacco[J]. Chemistry, 2021, 84(9): 900-905. | |
| 6 | KUMAR V, SHARMA A, KOHLI S K, et al.. Differential distribution of polyphenols in plants using multivariate techniques[J]. Biotechnol. Res. Innov., 2019, 3(1): 1-21. | 
| 7 | MATHESIUS U. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase[J]. J. Exp. Bot., 2001, 52(SUPPL_1): 419-426. | 
| 8 | CHEN Z, YU L, WANG X, et al.. Changes of phenolic profiles and antioxidant activity in canaryseed (Phalaris canariensis L.) during germination[J]. Food Chem., 2016, 194: 608-618. | 
| 9 | CHEYNIER V, COMTE G, DAVIES K M, et al.. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology[J]. Plant Physiol. Biochem., 2013, 72: 1-20. | 
| 10 | LATTANZIO V, CARDINALI A, RUTA C, et al.. Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress[J]. Environ. Exp. Bot., 2009, 65(1): 54-62. | 
| 11 | 杨巍巍, 邓航, 李娇, 等. 植物多酚化合物抗氧化损伤研究进展[J]. 现代食品, 2020(16): 74-78. | 
| YANG W W, DENG H, LI J, et al.. Research progress on antioxidant damage of plant polyphenols[J]. Mod. Food, 2020(16): 74-78. | |
| 12 | SINGH B, SINGH J P, KAUR A, et al.. Phenolic composition and antioxidant potential of grain legume seeds: a review[J]. Food Res. Int., 2017, 101: 1-16. | 
| 13 | 刘少静, 沈晶晶, 卢颖, 等. 丹皮酚、绿原酸和没食子酸复配物的体外抗氧化活性[J]. 化工科技, 2022, 30(1): 5-8. | 
| LIU S J, SHEN J J, LU Y, et al.. Antioxidant properties of paeonol, chlorogenic acid, gallic acid and theirmixtures in vitro [J]. Sci. Technol. Chem. Ind., 2022, 30(1): 5-8. | |
| 14 | REHMAN M, ULLAH S, BAO Y, et al.. Light-emitting diodes: whether an efficient source of light for indoor plants?[J]. Environ. Sci. Pollut. Res. Int., 2017, 24(32): 24743-24752. | 
| 15 | DJERRAB D, BERTRAND B, BREITLER J C, et al.. Photoperiod-dependent transcriptional modifications in key metabolic pathways in Coffea arabica [J]. Tree Physiol., 2021, 41(2): 302-316. | 
| 16 | WOOD W H J, BARNETT S F H, FLANNERY S, et al.. Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI[J]. Plant Physiol., 2019, 180(4): 2152-2166. | 
| 17 | GUINEA DIAZ M, NIKKANEN L, HIMANEN K, et al.. Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age[J]. Plant J. Cell Mol. Biol., 2020, 104(3): 718-734. | 
| 18 | USMAN H, ULLAH M A, JAN H, et al.. Interactive effects of wide-spectrum monochromatic lights on phytochemical production, antioxidant and biological activities of Solanum xanthocarpum callus cultures[J/OL]. Molecules, 2020, 25(9): 2201[2024-06-09]. . | 
| 19 | LI K, JI L, XING Y, et al.. Data-independent acquisition proteomics reveals the effects of red and blue light on the growth and development of moso bamboo (Phyllostachys edulis) seedlings[J/OL]. Int. J. Mol. Sci., 2023, 24(6): 5103[2024-06-09]. . | 
| 20 | 曾珍, 陈万生, 肖莹. 植物必需金属离子对药用植物次生代谢产物生物合成的作用[J]. 植物生理学报, 2022, 58(4): 597-606. | 
| ZENG Z, CHEN W S, XIAO Y. The effects of essential metal ions on the biosynthesis of secondary metabolites in medicinal plants[J]. Plant Physiol. J., 2022, 58(4): 597-606. | |
| 21 | LIANG Z, HU Q N, LUO Z S, et al.. Combined phenolomic approaches reveal elevated CO2 influences phenolic biosynthesis in wolfberry (Lycium barbarum) [J/OL]. Postharvest Biol. Tec., 2023, 204: 112456[2024-01-26] . | 
| 22 | 李莉, 赵越, 马君兰. 苯丙氨酸代谢途径关键酶: PAL、C4H、4CL研究新进展[J]. 生物信息学, 2007, 5(4): 187-189. | 
| LI L, ZHAO Y, MA J L. Recent progress on key enzymes: PAL, C4H, 4CL of phenylalanine metabolism pathway[J]. China J. Bioinform., 2007, 5(4): 187-189. | |
| 23 | CHOI O, WU C Z, KANG S Y, et al.. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli [J]. J. Ind. Microbiol. Biotechnol., 2011, 38(10): 1657-1665. | 
| 24 | SORIANO G, DEL-CASTILLO-ALONSO M Á, MONFORTE L, et al.. Photosynthetically-active radiation, UV-A and UV-B, causes both common and specific damage and photoprotective responses in the model liverwort Marchantia polymorpha subsp. ruderalis[J]. Photochem. Photobiol. Sci., 2019, 18(2): 400-412. | 
| 25 | OHARA T, SATAKE A. Photosynthetic entrainment of the circadian clock facilitates plant growth under environmental fluctuations: perspectives from an integrated model of phase oscillator and phloem transportation[J/OL]. Front. Plant Sci., 2017, 8: 1859[2024-06-09]. . | 
| 26 | 刘景玲, 齐志鸿, 郝文芳, 等. UV-B辐射和干旱对丹参生长和叶片中酚酸类成分的影响[J]. 生态学报, 2015, 35(14): 4642-4650. | 
| LIU J L, QI Z H, HAO W F, et al.. The effects of drought and UV-B radiation on the growth and the phenolic compounds of the Salvia miltiorrhiza Bunge leaf[J]. Acta Ecol. Sin., 2015, 35(14): 4642-4650. | |
| 27 | LIU K, GAO M, JIANG H, et al.. Light intensity and photoperiod affect growth and nutritional quality of Brassica microgreens[J/OL]. Molecules, 2022, 27(3): 883[2024-06-09]. . | 
| 28 | 严文一, 贺忠群, 王一鸣, 等. 光周期对人参菜开花和品质的调控作用[J].西北植物学报,2020,40(8):1364-1371. | 
| YAN W Y, HE Z Q, WANG Y M, et al.. Regulation of photoperiod on flowering and quality of Talinum crassifolium (jacq.) gaertn[J]. Acta Bot. Boreali Occidentalia Sin., 2020, 40(8): 1364-1371. | |
| 29 | ATIF M J, AMIN B, GHANI M I, et al.. Allium sativum L. (Garlic) bulb enlargement as influenced by differential combinations of photoperiod and temperature[J/OL]. Food Chem., 2021, 338: 127991[2024-06-09]. . | 
| 30 | ULEBERG E, ROHLOFF J, JAAKOLA L, et al.. Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.)[J]. J. Agric. Food Chem., 2012, 60(42): 10406-10414. | 
| 31 | EID G M, ALBATAL N, HADDAD S. Effect of photoperiod on the flowering of some cultivars of Hydrangea (Hydrangea macrophylla)[J/OL]. Int. J. Hortic., 2016: 6[2024-06-09]. . | 
| 32 | 张渊博, 郝文琴, 石玉, 等. 不同光周期下外源锌对水培生菜生长和品质的影响[J]. 中国农学通报, 2022, 38(13): 41-46. | 
| ZHANG Y B, HAO W Q, SHI Y, et al.. Effects of exogenous zinc on the growth and quality of hydroponic lettuce under different photoperiods[J]. Chin. Agric. Sci. Bull., 2022, 38(13): 41-46. | |
| 33 | GAO M, HE R, SHI R, et al.. Differential effects of low light intensity on broccoli microgreens growth and phytochemicals[J/OL]. Agronomy, 2021, 11(3): 537[2024-06-09]. . | 
| 34 | 赵天瑶, 王丽云, 姜宏伟, 等. 豆类种子及其芽苗菜的营养品质、功能性成分及抗氧化性研究[J]. 食品与发酵工业, 2020, 46(5): 83-90. | 
| ZHAO T Y, WANG L Y, JIANG H W, et al.. Nutritional quality, phenolic profile and antioxidant activity in legumes seeds and their sprouts[J]. Food Ferment. Ind., 2020, 46(5): 83-90. | |
| 35 | 毕伟伟, 赵贵兴, 夏晓雨, 等. 光照对大豆萌发过程中蛋白质和异黄酮的影响[J]. 黑龙江农业科学, 2020(12): 37-41. | 
| BI W W, ZHAO G X, XIA X Y, et al.. Effects of light on isoflavone and protein during germination of soybean[J]. Heilongjiang Agric. Sci., 2020(12): 37-41. | |
| 36 | CARVALHO I S, CAVACO T, CARVALHO L M, et al.. Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas (L.) Lam.) leaves[J]. Food Chem., 2010, 118(2): 384-390. | 
| 37 | DONG W, LI M, LI Z, et al.. Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods[J]. Plant Physiol. Biochem., 2020, 146: 315-328. | 
| 38 | LIU B Y, CHEN Y W, JIN M K, et al.. Effects of altitude on polyphenol content in cigars[J]. Agri. Sci. Tech., 2020, 21(4): 15-22. | 
| 39 | 郑明, 周冀衡, 黄勇. 光照强度对烤烟烟苗生长和代谢产物含量的影响[J]. 作物研究, 2009, 23(3): 181-183. | 
| ZHENG M, ZHOU J H, HUANG Y. Effects of illumination intensity on growth of tobacco seedling and content of metabolites[J]. Crop Res., 2009, 23(3): 181-183. | |
| 40 | WU B H, NIU N, LI J H, et al.. Leaf: fruit ratio affects the proteomic profile of grape berry skins[J]. J. Amer. Soc. Hort. Sci., 2013, 138(6): 416-427. | 
| 41 | PROIETTI S, MOSCATELLO S, GIACOMELLI G A, et al.. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment[J]. Adv. Space Res., 2013, 52(6): 1193-1200. | 
| 42 | SONG J, HUANG H, HAO Y, et al.. Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration[J/OL]. Sci. Rep., 2020, 10(1): 2796[2024-06-09]. . | 
| 43 | ARENA M E, POSTEMSKY P D, CURVETTO N R. Changes in the phenolic compounds and antioxidant capacity of Berberis microphylla G. Forst. berries in relation to light intensity and fertilization[J]. Sci. Hortic., 2017, 218: 63-71. | 
| 44 | LEE H R, KIM H M, JEONG H W, et al.. Growth and bioactive compound content of Glehnia littoralis Fr. Schmidt ex miquel grown under different CO2 concentrations and light intensities[J/OL]. Plants, 2020, 9(11): 1581[2024-06-09]. . | 
| 45 | MA Y, LIU Y, YANG P, et al.. The synthesis mechanism of chlorogenic acid in leaves of Eucommia ulmoides oliver[J]. App. Ecol. Env. Res., 2020, 18(2): 2719-2725. | 
| 46 | RE G A, PILUZZA G, SANNA F, et al.. Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system[J]. J. Sci. Food Agric., 2019, 99(1): 191-198. | 
| 47 | GHASEMZADEH A, GHASEMZADEH N. Effects of shading on synthesis and accumulation of polyphenolic compounds in ginger (Zingiber officinale Roscoe) varieties[J]. J. Med. Plants Res., 2011, 5(11): 2435-2441. | 
| 48 | 唐世梅, 蔡文淇, 张大毛, 等. 光照强度对三个虎耳草观赏品种的形态及生理指标的影响[J]. 广西植物, 2023, 43(4): 699-711. | 
| TANG S M, CAI W Q, ZHANG D M, et al.. Effects of light intensities on morphological and physiological indexes of three ornamental cultivars of Saxifraga stolonifera [J]. Guihaia, 2023, 43(4): 699-711. | |
| 49 | MA Z H, LI W F, MAO J, et al.. Synthesis of light-inducible and light-independent anthocyanins regulated by specific genes in grape'Marselan' (V . viniferaL.)[J/OL]. PeerJ, 2019, 7: e6521[2024-06-09]. . | 
| 50 | ZHANG Q, LIU M, RUAN J. Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves[J/OL]. BMC Plant Biol., 2017, 17(1): 64[2024-06-09]. . | 
| 51 | LIU Y Y, CHEN X R, WANG J P, et al.. Transcriptomic analysis reveals flavonoid biosynthesis of Syringa oblata Lindl. in response to different light intensity[J/OL]. BMC Plant Biol., 2019, 19(1): 487[2024-06-09]. . | 
| 52 | LANDI M, TATTINI M, GOULD K S. Multiple functional roles of anthocyanins in plant-environment interactions[J]. Environ. Exp. Bot., 2015, 119: 4-17. | 
| 53 | AGATI G, TATTINI M. Multiple functional roles of flavonoids in photoprotection[J]. New. Phytol., 2010, 186(4): 786-793. | 
| 54 | AGATI G, AZZARELLO E, POLLASTRI S, et al.. Flavonoids as antioxidants in plants: location and functional significance[J]. Plant Sci. 2012, 196: 67-76. | 
| 55 | KOLB C A, KÄSER M A, KOPECKÝ J, et al.. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves[J]. Plant Physiol., 2001, 127(3): 863-875. | 
| 56 | CHEN Z, MA Y, YANG R, et al.. Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation[J]. Food Chem., 2019, 288: 368-376. | 
| 57 | JENKINS G I. Photomorphogenic responses to ultraviolet-B light[J]. Plant Cell Environ., 2017, 40(11): 2544-2557. | 
| 58 | SHAMALA L F, ZHOU H C, HAN Z X, et al.. UV-B induces distinct transcriptional re-programing in UVR8-signal transduction, flavonoid, and terpenoids pathways in Camellia sinensis [J/OL]. Front. Plant Sci., 2020, 11: 234[2024-06-09]. . | 
| 59 | 王毅, 钟楚, 陈宗瑜, 等. UV-B辐射对烟草(Nicotiana tobacum)叶片总多酚含量和PPO活性的影响[J]. 中国烟草学报, 2010, 16(1): 49-52+57. | 
| WANG Y, ZHONG C, CHEN Z Y, et al.. Effects of UV-B radiation on total polyphenol content and PPO activity in flue-cured tobacco leaves[J]. Acta Tabacaria Sin., 2010, 16(1): 49-52+57. | |
| 60 | BARTLEY G E, AVENA-BUSTILLOS R J, DU W X, et al.. Transcriptional regulation of chlorogenic acid biosynthesis in carrot root slices exposed to UV-B light[J]. Plant Gene, 2016, 7: 1-10. | 
| 61 | KERR L D, GRAVATT D A, WIGGERS R J. The effects of ultraviolet light on anthocyanin accumulation in the adventitious roots of Sedum wrightii (Crassulaceae)[J/OL]. Ann. Bio. Sci, 2018, 6(1): [2024-06-09]. . | 
| 62 | 曹婷婷, 曾凯芳, 邓丽莉. 发光二极管蓝光对乙烯褪绿早熟蜜橘果实叶绿素代谢的调控作用[J]. 食品科学, 2023, 44(9): 139-146. | 
| CAO T T, ZENG K F, DENG L L. Effect of blue light-emitting diode (LED) irradiation on chlorophyll metabolism in ethylene-degreened early-season Satsuma mandarin fruit[J]. Food Sci., 2023, 44(9): 139-146. | |
| 63 | 潘可可, 王克磊, 李斌奇, 等. 不同比例红蓝光及光照强度对金线莲生理及叶绿素荧光特性的影响[J]. 热带作物学报, 2022, 43(8): 1628-1635. | 
| PAN K K, WANG K L, LI B Q, et al.. Effects of different proportion of red and blue light and light intensity on physiology and chlorophyll fluorescence characteristics of Anoectochilus roxburghii [J]. Chin. J. Trop. Crops, 2022, 43(8): 1628-1635. | |
| 64 | OKAMOTO H, DUCREUX L J M, ALLWOOD J W, et al.. Light regulation of chlorophyll and glycoalkaloid biosynthesis during Tuber greening of potato S. tuberosum [J/OL]. Front. Plant Sci., 2020, 11: 753[2024-06-09]. . | 
| 65 | WANG F, ROBSON T M, CASAL J J, et al.. Contributions of cryptochromes and phototropins to stomatal opening through the day[J]. Funct. Plant Biol., 2020, 47(3): 226-238. | 
| 66 | 叶宇芸. 隐花色素CRY1和CRY2在草莓生长发育中的功能鉴定[D]. 雅安: 四川农业大学, 2022. | 
| 67 | 唐千惠, 王佳欣, 孙康, 等. 茶树隐花色素基因CsCRY1和CsCRY2的克隆及表达模式分析[J]. 植物资源与环境学报, 2020, 29(6): 11-22. | 
| TANG Q H, WANG J X, SUN K, et al.. Cloning of cryptochrome gene CsCRY1 and CsCRY2 in Camellia sinensis and analysis on expression pattern[J]. J. Plant Resour. Environ., 2020, 29(6): 11-22. | |
| 68 | ZHOU T, MENG L, MA Y, et al.. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis [J]. Plant Cell Rep., 2018, 37(2): 251-264. | 
| 69 | 王曼. 蓝光诱导拟南芥(Arabidopsis thaliana L.)花色素苷积累及CHS基因表达的信号转导研究[D]. 广州: 华南师范大学, 2003. | 
| 70 | JOHKAN M, SHOJI K, GOTO F, et al.. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce[J]. HortScience, 2010, 45(12): 1809-1814. | 
| 71 | ISHISHITA K, SUETSUGU N, HIROSE Y, et al.. Functional characterization of blue-light-induced responses and PHOTOTROPIN1 gene in Welwitschia mirabilis [J]. J. Plant Res., 2016, 129(2): 175-187. | 
| 72 | CHRISTIE J M, BLACKWOOD L, PETERSEN J, et al.. Plant flavoprotein photoreceptors[J]. Plant Cell Physiol., 2015, 56(3): 401-413. | 
| 73 | KADOMURA-ISHIKAWA Y, MIYAWAKI K, NOJI S, et al.. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria × ananassa fruits[J]. J. Plant Res., 2013, 126(6): 847-857. | 
| 74 | LEE M, XU J, WANG W, et al.. The effect of supplemental blue, red and far-red light on the growth and the nutritional quality of red and green leaf lettuce[J]. Am. J. Plant Sci., 2019, 10(12): 2219-2235. | 
| 75 | 陈兵林, 李浩, 母少东, 等. 有色膜遮光对烤烟生长和光合特性及其初烤品质的影响[J]. 西北植物学报, 2014, 34(4): 792-799. | 
| CHEN B L, LI H, MU S D, et al.. Effects of different color film shading on growth, photosynthetic characteristics and quality indexes after first baking of flue-cured tobacco[J]. Acta Bot. Boreali Occidentalia Sin., 2014, 34(4): 792-799. | |
| 76 | KOBORI R, HASHIMOTO S, KOSHIMIZU H, et al.. Flavan-3-ols content in red raspberry leaves increases under blue led-light irradiation[J/OL]. Metabolites, 2019, 9(3): 56[2024-06-09]. . | 
| 77 | HUYSKENS-KEIL S, EICHHOLZ-DÜNDAR I, HASSENBERG K, et al.. Impact of light quality (white, red, blue light and UV-C irradiation) on changes in anthocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of white asparagus after harvest[J/OL]. Postharvest Biol. Technol., 2020, 161: 111069[2024-06-09]. . | 
| 78 | NAOYA FUKUDA M E, YOSHIDA H, KUSANO M. Effects of light quality, photoperiod, CO2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants[J]. Plant Physiol. Biochem., 2022, 186: 290-298. | 
| 79 | ZHANG Y, JIANG L, LI Y, et al.. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria × ananassa)[J/OL]. Molecules, 2018, 23(4): 820[2024-06-09]. . | 
| 80 | LIU Y, SCHOUTEN R E, TIKUNOV Y, et al.. Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit[J/OL]. Postharvest Biol. Technol., 2022, 192: 112024[2024-06-09]. . | 
| 81 | CHEN X, CAI W, XIA J, et al.. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry[J]. J. Agric. Food Chem., 2020, 68(44): 12485-12492. | 
| 82 | EBISAWA M, SHOJI K, KATO M, et al.. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.)[J]. Environ. Control Biol., 2008, 46(1): 1-11. | 
| 83 | CUI Y, ZHU M, SONG J, et al.. Expression dynamics of phytochrome genes for the shade-avoidance response in densely direct-seeding rice[J/OL]. Front. Plant Sci., 2022, 13: 1105882[2024-06-09]. . | 
| 84 | 姜敏, 李魏, 董铮, 等. 光敏色素对植物抗逆反应的调控研究进展[J]. 生物技术通报, 2017, 33(7): 15-21. | 
| JIANG M, LI W, DONG Z, et al.. Recent advances on the regulation of phytochrome in plant defense resistance[J]. Biotechnol. Bull., 2017, 33(7): 15-21. | |
| 85 | 杜玉芬. 红蓝白组合光对茄子幼苗生长与产量和品质的影响[D]. 泰安: 山东农业大学, 2019. | 
| 86 | 陈冰星, 王晓倩, 刘涛, 等. 不同光质光周期对樱桃萝卜生长发育及营养品质的影响[J]. 西北植物学报, 2020, 40(1): 77-86. | 
| CHEN B X, WANG X Q, LIU T, et al.. Effect of different light quality and photoperiods on growth development and nutritional quality of cherry radish[J]. Acta Bot. Boreali Occidentalia Sin., 2020, 40(1): 77-86. | |
| 87 | LEE J S, LIM T G, KIM Y H. Growth and phytochemicals in lettuce as affected by different ratios of blue to red led radiation[J]. Acta Hortic., 2014, 1037: 843-848. | 
| 88 | OWEN W G, LOPEZ R G. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties[J]. HortScience, 2015, 50(5): 676-684. | 
| 89 | 赵燕. 光环境对蕹菜生长、产量及品质的影响[D]. 泰安: 山东农业大学, 2020. | 
| [1] | Lin XIA, Xiangli XU, Xueyun WANG, Jun YANG, Mingzhu WU, Weiwu SONG. Research Progress on the Biosynthesis of Chlorogenic Acid in Plant [J]. Current Biotechnology, 2024, 14(6): 973-979. | 
| [2] | Shaoting PAN, Boxuan WANG, Jiaxin CHEN, Jiajun CAI, Yanshen LIN, Lingzhi TANG, Xuan HONG. Research Progress on Polyketides from Marine Fungi [J]. Current Biotechnology, 2024, 14(6): 993-1003. | 
| [3] | Chang XU, Tianyi LIU, Wenjia LIU, Limin ZHANG, Jixian MO. Research Progress in Source, Biosynthesis and Function of Microbial Exopolysaccharides [J]. Current Biotechnology, 2024, 14(3): 368-376. | 
| [4] | Yiming FAN, Guizhen GAO, Yujun XUE, Xiaoming WU. Research Progress on Plant Nervonic Acid [J]. Current Biotechnology, 2022, 12(5): 664-672. | 
| [5] | Yanjiao LI, Yuan GAO, Lei WANG, Lan ZHANG. Research Progress of Tocotrienol [J]. Current Biotechnology, 2021, 11(6): 668-675. | 
| [6] | YAO Xinglan, WANG Lei*, ZHANG Lan*. Progress of Vitamin E Biofortification in Plants [J]. Curr. Biotech., 2020, 10(5): 479-486. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||