| 1 | RODRÍGUEZ A G P, LEÓN J A A. Methods for determination of pesticides and fate of pesticides in the fields[J/OL]. Controll. Release Pestic. Sustain. Agric., 2020, doi:10.1007/978-3-030-23396-9_2[2024-03-16]. . | 
																													
																							| 2 | ALAVINIA S J, MIRVAGHEFI A, FARAHMAND H, et al.. DNA damage, acetylcholinesterase activity, and hematological responses in rainbow trout exposed to the organophosphate malathion[J/OL]. Ecotoxicol. Environ. Saf., 2019, 182: 109311[2024-03-16]. . | 
																													
																							| 3 | MOUSSAOUI Y, TUDURI L, KERCHICH Y, et al.. Atmospheric concentrations of PCDD/Fs, dl-PCBs and some pesticides in northern Algeria using passive air sampling[J]. Chemosphere, 2012, 88(3): 270-277. | 
																													
																							| 4 | KAWAHARA J, HORIKOSHI R, YAMAGUCHI T, et al.. Air pollution and young children's inhalation exposure to organophosphorus pesticide in an agricultural community in Japan[J]. Environ. Int., 2005, 31(8): 1123-1132. | 
																													
																							| 5 | MILOŠEVIĆ M D, PAUNOVIĆ M G, MATIĆ M M, et al.. Role of selenium and vitamin C in mitigating oxidative stress induced by fenitrothion in rat liver[J]. Biomed. Pharmacother., 2018, 106: 232-238. | 
																													
																							| 6 | KASHIWADA S, MOCHIDA K, ADACHI Y, et al.. Influence of fenitrothion-exposure on the metabolic activity of a rotifer (Brachionus plicatilis) to organophosphorus insecticides[J]. J. Pest. Sci., 2002, 27(1): 59-63. | 
																													
																							| 7 | SAWCZYN T, DOLEZYCH B, KLOSOK M, et al.. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion[J]. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng., 2012, 47(11): 1644-1651. | 
																													
																							| 8 | DENDUP T, FENG X, CLINGAN S, et al.. Environmental risk factors for developing type 2 diabetes mellitus: a systematic review[J/OL]. Int. J. Environ. Res. Public. Health, 2018, 15(1): E78[2024-03-16]. . | 
																													
																							| 9 | RUART M, CHAVARRIA L, CAMPRECIÓS G, et al.. Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury[J]. J. Hepatol., 2019, 70(3): 458-469. | 
																													
																							| 10 | TANG Q, TANG J, REN X, et al.. Glyphosate exposure induces inflammatory responses in the small intestine and alters gut microbial composition in rats[J/OL]. Environ. Pollut., 2020, 261: 114129[2024-03-16]. . | 
																													
																							| 11 | TSIKAS D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges[J]. Anal. Biochem., 2017, 524: 13-30. | 
																													
																							| 12 | ZHANG C, FENNEL E M J, DOUILLET C, et al.. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes[J]. Arch. Toxicol., 2017, 91(12): 3811-3821. | 
																													
																							| 13 | TAPPY L, LÊ K A. Metabolic effects of fructose and the worldwide increase in obesity[J]. Physiol. Rev., 2010, 90(1): 23-46. | 
																													
																							| 14 | LUZZATTO L, ALLY M, NOTARO R. Glucose-6-phosphate dehydrogenase deficiency[J]. Blood, 2020, 136(11): 1225-1240. | 
																													
																							| 15 | IYNEDJIAN P B. Molecular physiology of mammalian glucokinase[J]. Cell. Mol. Life Sci., 2009, 66(1): 27-42. | 
																													
																							| 16 | 丁阳阳.邻苯二甲酸二(2-乙基己基)酯暴露对发育期2型糖尿病小鼠的代谢毒性效应、易感性及机制研究[D].镇江:江苏大学,2021. | 
																													
																							|  | DING Y Y. Study on the metabolic toxicity, susceptibility and mechanism of DEHP on adolescent mice with type 2 diabetes mellitus (T2DM) [D]. Zhenjiang: Jiangsu University,2021. | 
																													
																							| 17 | KITANO H. Computational systems biology[J]. Nature, 2002, 420: 206-210. | 
																													
																							| 18 | LAVIN D P, WHITE M F, BRAZIL D P. IRS proteins and diabetic complications[J]. Diabetologia, 2016, 59(11): 2280-2291. | 
																													
																							| 19 | 吴洁,秦兴华,侯作旭,等.MiR-494-3p通过下调胰岛素受体底物-1促糖尿病大鼠心肌细胞胰岛素抵抗[J].生理学报,2019,71(2):271-278. | 
																													
																							|  | WU J, QIN X H, HOU Z X, et al.. MiR-494-3p reduces insulin sensitivity in diabetic cardiomyocytes by downregulation of insulin receptor substrate 1[J]. Acta Physiol. Sin., 2019, 71(2): 271-278. | 
																													
																							| 20 | DU X, LI X, CHEN L, et al.. Hepatic miR-125b inhibits insulin signaling pathway by targeting PIK3CD[J]. J. Cell. Physiol., 2018, 233(8): 6052-6066. | 
																													
																							| 21 | DONNELY R, QU X. Mechanisms of insulin resistance and new pharmacological approaches to metabolism and diabetic complications[J]. Clin. Exp. Pharmacol. Physiol., 1998: 25(2): 79-87. | 
																													
																							| 22 | JOPE R S, YUSKAITIS C J, BEUREL E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics[J]. Neurochem. Res., 2007, 32(4): 577-595. |