Current Biotechnology ›› 2023, Vol. 13 ›› Issue (3): 383-389.DOI: 10.19586/j.2095-2341.2022.0196
• Reviews • Previous Articles Next Articles
Liang BAI1,2(
), He HUANG1, Ping WANG2(
)
Received:2022-11-21
Accepted:2023-03-10
Online:2023-05-25
Published:2023-06-12
Contact:
Ping WANG
通讯作者:
王苹
作者简介:白亮 E-mail:bailiang20101@163.com;
基金资助:CLC Number:
Liang BAI, He HUANG, Ping WANG. Advances in Synthetic Biology on the Treatment of Metabolic Diseases[J]. Current Biotechnology, 2023, 13(3): 383-389.
白亮, 黄鹤, 王苹. 合成生物学在治疗代谢性疾病中的研究进展[J]. 生物技术进展, 2023, 13(3): 383-389.
| 适应症 | 靶标物质 | 作用机制 | 参考文献 |
|---|---|---|---|
| 酒精性脂肪肝 | IL-22 | 上调肠道Reg3g表达,减少细菌移位至肝脏,缓解肝损伤 | [ |
| 高血氨症 | 苯丙氨酸 | 构建Phe代谢途径,降低血氨浓度 | [ |
| 肥胖 | GLP-1 | 促进胰岛素的分泌,改善血脂代谢,调节肠道菌群组成 | [ |
| 丁酸 | 改善物质代谢,调节肠道菌群组成 | [ | |
| 泛连接蛋白 | 与Gβγ亚基结合后,通过β3AR刺激而被激活,调节细胞产热 | [ | |
| 糖尿 | 筛选抑制剂 | 筛选β细胞分化抑制剂 | [ |
| BSH和IL-10 | 响应乳糖浓度信号,调节肠道菌群组成 | [ | |
| 阿那白滞素 | 改善物质代谢,抵抗炎症 | [ | |
| 乳糖不耐受 | 乳糖 | 响应乳糖浓度信号,调节肠道菌群组成 | [ |
| 庞贝病 | α-葡萄糖苷酶 | 构建编码α-葡萄糖苷酶,降解糖原浓度 | [ |
| 粘多糖症 | 蛋白聚糖 | 构建编码人α-N-乙酰氨基葡萄糖苷酶,降解蛋白聚糖浓度 | [ |
Table 1 Currently engineering bacteria for treatment of metabolic diseases in clinical stage
| 适应症 | 靶标物质 | 作用机制 | 参考文献 |
|---|---|---|---|
| 酒精性脂肪肝 | IL-22 | 上调肠道Reg3g表达,减少细菌移位至肝脏,缓解肝损伤 | [ |
| 高血氨症 | 苯丙氨酸 | 构建Phe代谢途径,降低血氨浓度 | [ |
| 肥胖 | GLP-1 | 促进胰岛素的分泌,改善血脂代谢,调节肠道菌群组成 | [ |
| 丁酸 | 改善物质代谢,调节肠道菌群组成 | [ | |
| 泛连接蛋白 | 与Gβγ亚基结合后,通过β3AR刺激而被激活,调节细胞产热 | [ | |
| 糖尿 | 筛选抑制剂 | 筛选β细胞分化抑制剂 | [ |
| BSH和IL-10 | 响应乳糖浓度信号,调节肠道菌群组成 | [ | |
| 阿那白滞素 | 改善物质代谢,抵抗炎症 | [ | |
| 乳糖不耐受 | 乳糖 | 响应乳糖浓度信号,调节肠道菌群组成 | [ |
| 庞贝病 | α-葡萄糖苷酶 | 构建编码α-葡萄糖苷酶,降解糖原浓度 | [ |
| 粘多糖症 | 蛋白聚糖 | 构建编码人α-N-乙酰氨基葡萄糖苷酶,降解蛋白聚糖浓度 | [ |
| 1 | LI Y, ZHAO L, YU D, et al.. Metabolic dyndrome prevalence and its risk factors among adults in China: a nationally representative cross-sectional study[J/OL]. PLoS ONE, 2018, 13(6): e0199293[2018-06-19]. . |
| 2 | SAKLAYEN M G. The global epidemic of the metabolic syndrome[J/OL]. Curr. Hypertens. Rep., 2018, 20(2): 12[2018-02-26]. . |
| 3 | FARR O M, MANTZOROS C S. Treating prediabetes in the obese: are GLP-1 analogues the answer?[J]. Lancet, 2017, 389(10077): 1371-1372. |
| 4 | BOHULA S, SCIRICA B M, INZUCCHI S E, et al.. Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA TIMI 61): a randomised, placebo-controlled trial[J]. Lancet, 2018, 392(10161): 2269-2279. |
| 5 | DABKE K, HENDRICK G, DEVKOTA S. The gut microbiome and metabolic syndrome[J]. J. Clin. Invest., 2019, 129(10): 4050-4057. |
| 6 | MACKE E, TASIEMDKI, MASSOL F, et al.. Life history and eco-evolutionary dynamics in light of the gut microbiota[J]. OIKOS, 2017, 126(4): 508-531. |
| 7 | 刘梓嘉,姜雪,仪杨,等. 氢气与肠道菌群的关系研究进展[J].生物技术进展,2022,12(6):847-852. |
| 8 | VALDES A M, WALTER J. Role of the gut microbiota in nutrition and health[J/OL]. Brit. Med. J., 2018, 361: k2179[2018-06-13]. . |
| 9 | DORON S, SNYDMAN D R. Risk and safety of probiotics[J]. Clin. Infect Dis., 2015, 60(S2): 129-134. |
| 10 | TAPIOVAARA L, LEHTORANTA L, POUSSA T, et al.. Absence of adverse events in healthy individuals using probiotics-analysis of six randomised studies by one study group[J]. Benef. Microbes., 2016, 7(2): 161-169. |
| 11 | BERMUDZ-HUMARAN L G, LANGELLA P. Live bacterial biotherapeutics in the clinic[J]. Nat. Biotechnol., 2018, 36(9): 816-818. |
| 12 | 权春菊,郑忠亮. CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J].生物技术进展,2021,11(4):518-525. |
| 13 | BOER J R, BEISEL C L, NAIR N U. Synthetic biology approaches to engineer probiotics and members of the human microbiota for biomedical applications[J]. Annu. Rev. Biomed.Eng., 2018, 20: 277-300. |
| 14 | CERTAIN L K, WAY J C, PEZOEN M J, et al.. Using engineered bacteria to characterize infection dynamics and antibiotic effects in vivo[J]. Cell Host Microbe., 2017, 22: 263-268. |
| 15 | FERENCZI S, SOLYMOSI N, HORVATH I, et al.. Efficient treatment of a preclinical inflammatory bowel disease model with engineered bacteria[J]. Mol. Ther., 2020, 20: 218-226. |
| 16 | LI J, RIAZ R M S, SHAO D, et al.. Strategies to increase the efficacy of using gut microbiota for the modulation of obesity[J]. Nat. Rev. Immunol., 2017: 17: 219-232. |
| 17 | ZHAO J, LI M Y, CHEN Q F, et al.. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J/OL]. Nat. Commun., 2022, 13(1): 3432[2022-06-14]. . |
| 18 | HENDRIKX T, DUAN Y, WANG Y H, et al.. Bacteria engineered to produce IL22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice[J]. Gut, 2019, 68(8): 1504-1515. |
| 19 | CHUNG Y, RYU Y, AN B C, et al.. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota[J/OL]. Microbiome, 2021, 9(1): 122[2021-05-26]. . |
| 20 | ISABELLA V M, HA B N, CASTILLO M J, et al.. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria[J]. Nat. Biotechnol., 2018, 36(9): 857-864. |
| 21 | HOU Y, HOSSAIN G S, LI J H, et al.. Two-step production of phenylpyruvic acid from L-phenylalanine by growing and resting cells of engineered Escherichia coli: process optimization and kinetics modeling[J/OL]. PLoS ONE, 2016, 11(11): e0166457[2016-11-16]. . |
| 22 | PANTALEONE D P, GELLER A M, TAYLORP P, et al.. Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids[J]. J. Mol. Catal. B Enzym., 2001, 11(4-6): 795-803. |
| 23 | KURTZ C B, MILLET Y A, PUURUNEN M K, et al.. An engineered E . coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans[J/OL]. Sci. Transl. Med., 2019, 11(475): eaau7975[2019-01-16]. . |
| 24 | WANG L F, CHEN T T, WANG H, et al.. Engineered bacteria of MG1363- pMG36e-GLP-1 attenuated obesityinduced by high fat diet in mice[J/OL]. Front. Cell. Infect. Mi., 2021, 11: 595575[2021-02-25]. . |
| 25 | HWANG I Y, KOH E, WONG A, et al.. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models[J/OL]. Nat. Commun, 2017, 8: 15028[2017-04-11]. . |
| 26 | KOH A, DE-VADER F, KOVATCHEVA-DATCHARY P, et al.. From detary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1332-1345. |
| 27 | OCHOA-SANCHEZ R M, OLIVEIRA M, TREMBLAY M, et al.. Genetically engineered E. coli nissle attenuates hyperammonemia and prevents memory impairment in bile-duct ligated rats[J]. Liver Int., 2021, 41(5): 1020-1032. |
| 28 | BAI L, GAO M X, CHENG X M, et al.. Engineered butyrate-producing bacteria prevents high fat diet-induced obesity in mice[J/OL]. Microb. Cell Fact., 2020, 19: 94[2020-04-25]. . |
| 29 | MSCOTT B, GUTIERREZ-VAZQUEZ C, SANMARCO L M, et al.. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease[J]. Nat. Med., 2021, 27(7): 1212-1222. |
| 30 | TIAN P Y, HUANG Z X, ZHAO X X, et al.. Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing GLP-1[J]. Appl. Microbiol. Biotechnol., 2018, 102(17): 7565-7575. |
| 31 | MA J, LI C Y, WANG J R, et al.. Genetically engineered Escherichia coli Nissle 1917 secreting GLP-1 analog exhibits potential antiobesity effect in high-fat diet-induced obesity mice[J]. Obesity, 2020, 28(2): 315-322. |
| 32 | WANG L N, CHENG X M, BAI L, et al.. Positive interventional effect of engineered butyrate-producing bacteria on metabolic disorders and intestinal flora disruption in obese mice[J/OL]. Microbiol. Spectr., 2022, 10(2): e0114721[2022-04-27]. . |
| 33 | SENTHIVINAYAGAM S, SERBULEA V, UPCHURCH C M, et al.. Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels[J/OL]. Mol. Metab., 2020, 44: 101130[2020-11-25]. . |
| 34 | ATKINsSON M A, VON HERRATH M, POWERS A C, et al.. Current concepts on the pathogenesis of type 1 diabetes-considerations for attempts to prevent and reverse the disease[J]. Diabetes Care, 2015, 38(6): 979-988. |
| 35 | ABDELALIM E M. Modeling different types of diabetes using human pluripotent stem cells[J]. Cell. Mol. Life Sci., 2021, 78: 2459-2483. |
| 36 | VETHE H, BJORLYKKE Y, GHILA L M, et al.. Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells[J/OL]. Sci. Rep., 2017, 7(1): 4780[2017-07-06]. . |
| 37 | JINNG N H, BINTEJASMEN J, LIM C S, et al.. HNF4A haploinsufficiency in MODY1 abrogates liver and pancreas differentiation from patient-derived induced pluripotent stem cells[J]. iScience, 2019, 16: 192-205. |
| 38 | ROSADA-O, IVIERI E A, ANDERSON K, KENTY J H, et al.. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells[J/OL]. Nat. Commun., 2019, 10(1): 1464[2019-04-01]. . |
| 39 | RUSSELL B J, BROWN S D, SIGUENZA N, et al.. Intestinal transgene delivery with native E. coli chassis allows persistent physiological changes[J]. Cell, 2022, 185(17): 3263-3277. |
| 40 | SUMPTER K M, ADHIKARI S, GRISHMAN E K, et al.. Preliminary studies related to anti-interleukin-1 β therapy in children with newly diagnosed type 1 diabetes[J]. Pediatr. Diabet., 2011, 12(7): 656-667. |
| 41 | KRON J, CRAWFORD T, MIHALICK V, et al.. Interleukin-1 blockade in cardiac sarcoidosis: study design of the multimodality assessment of granulomas in cardiac sarcoidosis: anakinra randomized trial (MAGiC-ART)[J/OL]. J. Transl. Med., 2021, 19(1): 460[2021-11-08]. . |
| 42 | CHENG M Y, CHENG Z Y, YU Y Y, et al.. An engineered genetic circuit for lactose intolerance alleviation[J/OL]. BMC Biol., 2021, 19: 137[2021-07-05]. . |
| 43 | SMITH B K, COLLINS S W, CONON T J, et al.. Phase Ⅰ/Ⅱ trial of adeno-associated virus-mediated alphaglucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes[J]. Hum. Gene Ther., 2013, 24: 630-640. |
| 44 | CORTI M, LIBERATI C, SMITH B K, et al.. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease[J]. Hum. Gene Ther. Clin. Dev., 2017, 28(4): 208-218. |
| 45 | TUSKE S, YU T, HORDEAUX J, et al.. Development of a novel gene therapy for pompe disease: engineered acid alpha-glucosidase transgene for improved expression and muscle targeting[J]. Mol. Ther., 2002, 5(1): 571-578. |
| 46 | COLELLA P, SELLIER P, VERDERA H C, et al.. AAV gene transfer with tandem promoter design prevents anti-transgene immunity and provides persistent efficacy in neonate pompe mice[J]. Mol. Ther., 2018, 12: 85-101. |
| 47 | HU Z, LAN Y, ZHU D, et al.. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells[J/OL]. Biomed. Res. Int., 2014, 2014: 612832[2014-07-20]. . |
| 48 | XU L, WANG J, LIU Y L, et al.. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia[J]. New Engl. J. Med., 2019, 381: 1240-1247. |
| 49 | OU L, PRZYBILLA M J, AHLAT O, et al.. A highly efficacious PS gene editing system corrects metabolic and neurological complications of mucopolysaccharidosis type Ⅰ[J]. Mol. Ther., 2020, 28(6): 1442-1454. |
| 50 | SAWAMOTO K, CHEN H H, ALMECIGA-DIAZ C J, et al.. Gene therapy for mucopolysaccharidoses[J]. Mol. Genet. Metab., 2018, 123: 59-68. |
| 51 | TARDIEU M, ZERAH M, GOUGENON M L, et al.. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial[J]. Lancet Neurol., 2017, 16(9): 712-720. |
| [1] | Ling SHU, Mingwei BAO. The Novel Role and Research Advances of the Gut in Obesity-related Hypertension [J]. Current Biotechnology, 2025, 15(3): 426-431. |
| [2] | Yu LIU, Tian LI, Yongjun WEI, Ying WANG, Gen ZOU. The Prospect of Synthetic Biology in the New Track of Edible Fungi [J]. Current Biotechnology, 2024, 14(6): 886-891. |
| [3] | Guowei YU, Hongbao XUE, Junsong YANG, Changqing LIU, Qiang FANG. Research Advances on Anti-obesity by Plant Essential Oil and Volatile Components [J]. Current Biotechnology, 2024, 14(2): 196-204. |
| [4] | Junkui ZHAO, Yongzhong LU. Research Progress of Cyanobacteria Cell Factories [J]. Current Biotechnology, 2023, 13(2): 174-180. |
| [5] | Jie CHEN, Yongkang HUANG, Xi WANG. Application and Prospect of Synthetic Biology in the Field of New Chemical Materials [J]. Current Biotechnology, 2023, 13(1): 39-45. |
| [6] | Jingya GUO, Ping ZHANG, Yuhan ZHAO, Mengjie LI, Kunlun HUANG, Tao TONG. Advances on the Mechanism of Obesity-induced Skeletal Muscle Atrophy [J]. Current Biotechnology, 2022, 12(6): 861-868. |
| [7] | Pengxiang ZHAO, Fei XIE, Mengyu LIU, Yao Mawulikplimi ADZAVON, Xuemei MA. Research Progress in Hydrogen Biomedical Science [J]. Current Biotechnology, 2021, 11(4): 503-517. |
| [8] | YU Shulong1, ZHANG Hao2, LI Cencen2*. Research Progress on Long Noncoding RNA in Regulating Fat Development and Metabolism [J]. Curr. Biotech., 2020, 10(4): 333-338. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||