Current Biotechnology ›› 2023, Vol. 13 ›› Issue (3): 345-352.DOI: 10.19586/j.2095-2341.2023.0013
• Reviews • Previous Articles Next Articles
Jiasheng BAO(
), Bingzhen PAN, Qiwu QIAO, Huizhi LIU, Suhua PAN
Received:2023-02-13
Accepted:2023-03-10
Online:2023-05-25
Published:2023-06-12
作者简介:鲍佳生 E-mail: gasheng@163.com
基金资助:CLC Number:
Jiasheng BAO, Bingzhen PAN, Qiwu QIAO, Huizhi LIU, Suhua PAN. Advances in Yeast Bioactive Substances and Their Cosmetic Efficacy[J]. Current Biotechnology, 2023, 13(3): 345-352.
鲍佳生, 潘丙珍, 乔栖梧, 刘慧智, 潘素华. 酵母生物活性物质及其化妆品功效研究进展[J]. 生物技术进展, 2023, 13(3): 345-352.
| 活性物质 | 酵母种类 | 合成生物学改造策略 | 产量/(mg·L-1) | 参考文献 |
|---|---|---|---|---|
| 海藻糖 | 解脂耶氏酵母 | 解脂耶氏酵母细胞表面展示海藻糖合成酶TreS | 219 000.0 | [ |
| 谷胱甘肽 | 毕赤酵母 | 整合串联表达来源于酿酒酵母的Scgsh1和Scgsh2基因 | 2 000.0 | [ |
| 核黄素 | 无名假丝酵母 | 过表达sef1和imh3基因,并利用经典的诱变方法 | 1 026.0±50.0 | [ |
| 生育三烯酚 | 酿酒酵母 | 将来自光合生物的异源基因与内源莽草酸途径和甲羟戊酸途径相结合 | 320.0 | [ |
| 视黄醇 | 酿酒酵母 | 引入β-胡萝卜素双加氧酶基因blh,增强前体GGPP和辅酶因子NADPH供应,共表达具有视黄醛还原能力的内源性酶Env9与异源性酶ybbO | 2 479.3 | [ |
| 角鲨烯 | 酿酒酵母 | 通过组成型启动子来调控角鲨烯生物合成途径中的基因表达 | 304.2 | [ |
| 角鲨烯 | 解脂耶氏酵母 | 过表达角鲨烯合成酶、HMG-CoA还原酶、甘露醇脱氢酶或ATP柠檬酸裂解酶 | 502.7 | [ |
| β-胡萝卜素 | 酿酒酵母 | 表达来自解脂耶氏酵母的脂肪酶基因(lip2、lip7和lip8),引入红法夫酵母中β-胡萝卜素生物合成途径的crtI、crtYB和crtE基因 | 477.9 | [ |
| 虾青素 | 解脂耶氏酵母 | 融合来自副球菌属(Paracoccus sp.)的CrtW和雨生红球藻(Haematococcus pluvialis)的CrtZ,定位到脂质体、内质网和过氧化物酶体等亚细胞器中 | 858.0 | [ |
| 番茄红素 | 酿酒酵母 | 过表达crtI、crtB和crtE,敲除内源性旁路基因,增加前体乙酰辅酶A的供应 | 3 280.0 | [ |
| 番茄红素 | 解脂耶氏酵母 | 导入异戊二烯醇利用途径,增加前体异戊烯基焦磷酸和二甲基烯丙基焦磷酸供应,过表达异戊烯焦磷酸异构酶Idi、法尼基焦磷酸合成酶Erg20 | 4 200.0 | [ |
| 白藜芦醇 | 酿酒酵母 | 过表达白藜芦醇苯丙氨酸解氨酶AtPAL2、肉桂酸羟化酶AtC4H、对香豆素-CoA连接酶At4CL2和白藜芦醇合成酶VvVST1、优化细胞色素P450单加氧酶电子传递 | 800.0 | [ |
Table 1 Biosynthesis of various bioactive substances in yeast
| 活性物质 | 酵母种类 | 合成生物学改造策略 | 产量/(mg·L-1) | 参考文献 |
|---|---|---|---|---|
| 海藻糖 | 解脂耶氏酵母 | 解脂耶氏酵母细胞表面展示海藻糖合成酶TreS | 219 000.0 | [ |
| 谷胱甘肽 | 毕赤酵母 | 整合串联表达来源于酿酒酵母的Scgsh1和Scgsh2基因 | 2 000.0 | [ |
| 核黄素 | 无名假丝酵母 | 过表达sef1和imh3基因,并利用经典的诱变方法 | 1 026.0±50.0 | [ |
| 生育三烯酚 | 酿酒酵母 | 将来自光合生物的异源基因与内源莽草酸途径和甲羟戊酸途径相结合 | 320.0 | [ |
| 视黄醇 | 酿酒酵母 | 引入β-胡萝卜素双加氧酶基因blh,增强前体GGPP和辅酶因子NADPH供应,共表达具有视黄醛还原能力的内源性酶Env9与异源性酶ybbO | 2 479.3 | [ |
| 角鲨烯 | 酿酒酵母 | 通过组成型启动子来调控角鲨烯生物合成途径中的基因表达 | 304.2 | [ |
| 角鲨烯 | 解脂耶氏酵母 | 过表达角鲨烯合成酶、HMG-CoA还原酶、甘露醇脱氢酶或ATP柠檬酸裂解酶 | 502.7 | [ |
| β-胡萝卜素 | 酿酒酵母 | 表达来自解脂耶氏酵母的脂肪酶基因(lip2、lip7和lip8),引入红法夫酵母中β-胡萝卜素生物合成途径的crtI、crtYB和crtE基因 | 477.9 | [ |
| 虾青素 | 解脂耶氏酵母 | 融合来自副球菌属(Paracoccus sp.)的CrtW和雨生红球藻(Haematococcus pluvialis)的CrtZ,定位到脂质体、内质网和过氧化物酶体等亚细胞器中 | 858.0 | [ |
| 番茄红素 | 酿酒酵母 | 过表达crtI、crtB和crtE,敲除内源性旁路基因,增加前体乙酰辅酶A的供应 | 3 280.0 | [ |
| 番茄红素 | 解脂耶氏酵母 | 导入异戊二烯醇利用途径,增加前体异戊烯基焦磷酸和二甲基烯丙基焦磷酸供应,过表达异戊烯焦磷酸异构酶Idi、法尼基焦磷酸合成酶Erg20 | 4 200.0 | [ |
| 白藜芦醇 | 酿酒酵母 | 过表达白藜芦醇苯丙氨酸解氨酶AtPAL2、肉桂酸羟化酶AtC4H、对香豆素-CoA连接酶At4CL2和白藜芦醇合成酶VvVST1、优化细胞色素P450单加氧酶电子传递 | 800.0 | [ |
| 活性成分 | 具有功效 | 评价方法或模型 | 参数指标 | 参考文献 |
|---|---|---|---|---|
| β-葡聚糖 | 保湿 | 人体功效试验 | 水合率 | [ |
| 酵母多肽 | 美白 | 生化酶法 | 抑制酪氨酸酶活性 | [ |
| 白藜芦醇 | 美白 | 尤卡坦猪/豚鼠模型 | 色素减退和皮肤变亮程度 | [ |
| 多肽 | 淡化黑眼圈 | 人体功效试验 | 角质层水分含量值、皮肤ITA°值 | [ |
| 富硒多肽 | 修复 | 细胞模型 | H2O2诱导的细胞毒性保护作用 | [ |
| 类胡萝卜素 | 防晒 | 细胞模型 | 乳酸脱氢酶活性和丙二醛含量 | [ |
| 角鲨烯、维生素E | 抗衰老 | 离体猪皮组织法 | SOD、GSH-Px、CAT等酶活力 | [ |
| 酵母多肽 | 防脱发作用 | 人体临床评估 | 头发密度、掉发数量 | [ |
Table 2 Cosmetic efficacy of yeast bioactive substances
| 活性成分 | 具有功效 | 评价方法或模型 | 参数指标 | 参考文献 |
|---|---|---|---|---|
| β-葡聚糖 | 保湿 | 人体功效试验 | 水合率 | [ |
| 酵母多肽 | 美白 | 生化酶法 | 抑制酪氨酸酶活性 | [ |
| 白藜芦醇 | 美白 | 尤卡坦猪/豚鼠模型 | 色素减退和皮肤变亮程度 | [ |
| 多肽 | 淡化黑眼圈 | 人体功效试验 | 角质层水分含量值、皮肤ITA°值 | [ |
| 富硒多肽 | 修复 | 细胞模型 | H2O2诱导的细胞毒性保护作用 | [ |
| 类胡萝卜素 | 防晒 | 细胞模型 | 乳酸脱氢酶活性和丙二醛含量 | [ |
| 角鲨烯、维生素E | 抗衰老 | 离体猪皮组织法 | SOD、GSH-Px、CAT等酶活力 | [ |
| 酵母多肽 | 防脱发作用 | 人体临床评估 | 头发密度、掉发数量 | [ |
| 1 | KURTZMAN C P, FELL J W, BOEKHOUT T. The yeast-a taxonomic study[M]. 5th ed. Amsterdam: Elsevier Science Publishers, 2011. |
| 2 | 宋以梅,贾秀伟,李树标,等.工业微生物解脂耶氏酵母及其应用研究[J].中国生物工程杂志,2020,40(9):77-86. |
| 3 | 李玲玲,刘雪,邱泽天,等.植物多酚的微生物合成[J].生物工程学报, 2021, 37(6): 2050-2076. |
| 4 | 丁梅华,程琳,赵华.《化妆品监督管理条例》 颁布背景下化妆品功效宣称的科学支持[J].轻工学报,2021,36(5):102-109. |
| 5 | LIU Y, WU Q, WU X, et al.. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: a review[J]. Int. J. Biol. Macromol., 2021, 173: 445-456. |
| 6 | YEHIA R S, SALEH A M, ISMAIL B M, et al.. Isolation and characterization of anti-proliferative and anti-oxidative mannan from Saccharomyces cerevisiae [J/OL]. J. King Saud Univ. Sci., 2022, 34(2): 101774[2022-09-15]. . |
| 7 | GUO W Y, GU X L, TONG Y Q, et al.. Protective effects of mannan/β-glucans from yeast cell wall on the deoxyniyalenol-induced oxidative stress and autophagy in IPEC-J2 cells[J]. Int. J. Biol. Macromol., 2019, 135: 619-629. |
| 8 | 马霞,刘蓝天,沈丽,等.提取方法对产朊假丝酵母β-葡聚糖性质的影响[J].食品科学,2018,39(11):119-125. |
| 9 | 赵国群,崇宇,季小莉,等.低分子量酵母甘露聚糖的制备及其抗氧化性研究[J].食品工业科技,2020,41(13):202-206. |
| 10 | LIU Y, HUANG G. The derivatization and antioxidant activities of yeast mannan[J]. Int. J. Biol. Macromol., 2018, 107: 755-761. |
| 11 | TANG Q, HUANG G, ZHAO F, et al.. The antioxidant activities of six (1→3)-β-D-glucan derivatives prepared from yeast cell wall[J]. Int. J. Biol. Macromol., 2017, 98: 216-221. |
| 12 | 李茜,于文文,吕雪芹,等.代谢工程改造酿酒酵母高效合成β-葡聚糖[J].食品与发酵工业,2022,48(23):1-7. |
| 13 | DU Y, ZHAO Y. Optimization of fermentation conditions fortrehalose production by a marine yeast[J]. Afr. J. Biotechnol., 2012, 11(14) : 3352-3357. |
| 14 | 张敏倩,刘功良,费永涛,等.利用蜂蜜接合酵母合成海藻糖[J].食品与发酵工业,2021,47(3):107-113. |
| 15 | 洪厚胜,窦冰然,郭会明.基于面包酵母中海藻糖提取工艺优化及菌株筛选的高密度培养工艺[J].食品科学,2018,39(6): 122-129. |
| 16 | LI N, WANG H, LI L, et al.. Integrated approach to producinghigh-purity trehalose from maltose by the yeast Yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface[J]. J. Agric. Food Chem., 2016, 64(31): 6179-6187. |
| 17 | 沈侨,张美,张丛兰,等.酵母活性肽及其应用的研究进展[J].食品与发酵科技,2019,55(2):63-69. |
| 18 | OLIVEIRAA S, FERREIRAC, PEREIRAJ O, et al.. Spent brewer's yeast (Saccharomyces cerevisiae) as a potential source of bioactive peptides: an overview[J]. Int. J. Biol. Macromol., 2022, 208: 1116-1126. |
| 19 | 彭颖,吕江波,陈法科,等.酵母抽提物抗氧化和美白活性及其应用[J].香料香精化妆品,2022,2:14-17. |
| 20 | 方聪明,刘联杰,周安盛.基于酶活性调节的酿酒酵母谷胱甘肽发酵调控研究[J].中国酿造,2014,33(6):79-84. |
| 21 | 高宇豪,吴勇杰,朱亚鑫,等.产谷胱甘肽毕赤酵母工程菌的构建及能量调控[J].食品与发酵工业,2021,47(7):21-26. |
| 22 | 付豪,刘平平,朱剑锋,等.酵母多肽的分离纯化及其化妆品功效研究[J].湖北农业科学,2020,59(7):184-187. |
| 23 | GUO H, GUO S, LIU H. Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate[J/OL]. Bioorg. Chem., 2020, 105: 104431[2022-09-15]. . |
| 24 | PINMANEE P, SOMPINIT K, ARNTHONG J, et al.. Enhancing the productivity and stability of superoxide dismutase from Saccharomyces cerevisiae TBRC657 and its application as a free radical scavenger[J/OL]. Fermentation, 2022, 8(4): 169[2022-09-15]. . |
| 25 | 田小海,常亮,王莘.响应面优化活性干酵母SOD提取工艺及抗氧化性能[J].中国老年学杂志,2021,41:5074-5078. |
| 26 | DMYTRUK K V, YATSYSHYN V Y, SYBIRNA N O, et al.. Metabolic engineering and classic selection of the yeast Candida famata (Candida flareri) for construction of strains with enhanced riboflavin production[J]. Metab. Eng., 2011, 13(1): 82-88. |
| 27 | 李彦娇,高媛,王磊,等.三烯生育酚研究进展[J].生物技术进展,2021,11(6):668-675. |
| 28 | SHEN B, ZHOU P P, JIAO X, et al.. Fermentative production of vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control[J/OL]. Nat. Commun., 2020, 11(1): 5155[2022-09-15]. . |
| 29 | HU Q Y, ZHANG T, YU H, et al.. Selective biosynthesis of retinol in S. cerevisiae [J/OL]. Bioresour. Bioprocess, 2022, 9(1): 22[2022-03-12]. . |
| 30 | BELENKY P, STEBBINS R, BOGAN K L, et al.. Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production[J/OL]. PLoS ONE, 2011, 6(5): 19710[2022-09-15]. . |
| 31 | KATO M, LIN S J. YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae [J]. J. Biol. Chem., 2014, 289(22): 15577-15587. |
| 32 | RASOOL A, ZHANG G, LI Z, et al.. Engineering of theterpenoid pathway in Saccharomyces cerevisiae co-overproduces squalene and the non-terpenoid compoundoleic acid[J]. Chem. Eng. Sci., 2016, 152: 457-467. |
| 33 | LIU H, WANG F, DENG L, et al.. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica [J/OL]. Bioresour. Technol., 2020, 317: 123991[2022-08-15]. . |
| 34 | GAO S L, TONG Y Y, ZHU L, et al.. Production of β-carotene by expressing a heterologous multifunctional carotene synthase in Yarrowia lipolytica [J]. Biotechnol. Lett., 2017, 39(6): 921-927. |
| 35 | KILDEGAARD K R, PEREZ B A, BELDA D D, et al.. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synth. Syst. Biotechnol., 2017, 4: 287-294. |
| 36 | MA Y, LI J, HUANG S, et al.. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica [J]. Metab. Eng., 2021, 68: 152-161. |
| 37 | SHI B, MA T, YE Z, et al.. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. J. Agri. Food Chem., 2019, 67: 11148-11157. |
| 38 | ZHANG X K, NIE M Y, CHEN J, et al.. Multicopy integrants of crt genes and co-expression of AMP deaminase improvelycopene production in Yarrowia lipolytica [J]. J. Biotechnol., 2019, 289: 46-54. |
| 39 | LI M, SCHNEIDER K, KRISTENSEN M, et al.. Engineering yeast for high-level production of stilbenoid antioxidants[J/OL]. Sci. Rep., 2016, 6: 36827[2022-07-10]. . |
| 40 | GU Y, MA J, ZHU Y, et al.. Engineering Yarrowia lipolytica as a chassis for de novo synthesis of five aromatic-derived natural products and chemicals[J]. ACS Synth. Biol., 2020, 8: 2096-2106. |
| 41 | FATHI Z, TRAMONTIN L R R, EBRAHIMIPOUR G, et al.. Metabolic engineering of Saccharomyces cerevisiae for production of β-carotene from hydrophobic substrates[J/OL]. FEMS Yeast Res., 2021, 21(1): foaa068[2022-10-16]. . |
| 42 | LUO Z, LIU N, LAZAR Z, et al.. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metab. Eng., 2020, 61: 344-351. |
| 43 | 罗春红,吴双,龙德权,等.一款酵母水的美白功效评价[J].香料香精化妆品,2020, 2:33-35. |
| 44 | 王欢,彭宁,张海波,等.富锌酵母提取物对成纤维细胞修复作用的研究[J].日用化学科学,2021,44(4):36-39. |
| 45 | DHURAT R, SHARMA A, SURVE R, et al.. Novel yeast extract is superior to colloidal oatmeal inproviding rapid itch relief[J]. J. Cosmet. Dermatol., 2021, 20(1): 207-209. |
| 46 | 季小莉,赵国群,刘金龙.酿酒酵母甘露聚糖的理化性质及吸湿保湿性[J].精细化工,2018,35(2):284-289. |
| 47 | KRISDAPHONG T, TOIDA T, POPP M, et al.. Evaluation of immunological and moisturizing activities of β-glucan isolated from molasses yeast waste[J]. Indian J. Pharm. Sci., 2018, 80(5): 795-801. |
| 48 | 秦允荣,王昌涛,何聪芬,等.单一保湿剂体外保湿功能的评价[J].日用化学工业,2006,36(3):199-201. |
| 49 | 吴悦,刘学,唐蔚,等.具有酪氨酸酶抑制作用的酵母多肽的分离纯化及分子量分布[J].应用化工,2014,43(6):1093-1096. |
| 50 | LINC B, BABIAR Z L, LIEBEL F, et al.. Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation[J]. J. Invest. Dermatol., 2002, 119: 1330-1340. |
| 51 | LEET H, SEO J O, BAEK S H, et al.. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin[J]. Biomol. Ther., 2014, 22(1): 35-40. |
| 52 | WU Y, JIA L L, ZHENG Y N, et al.. Resveratrate protects human skin from damage due to repetitive ultraviolet irradiation[J]. J. Eur. Acad. Dermatol., 2013, 27(3): 345-350. |
| 53 | 梁嘉宜,欧婷婷,邱志勇.含多肽成分眼霜淡化黑眼圈功效研究[J].日用化学品科学,2021,44(11):25-29. |
| 54 | GUO H, GUO S, LIU H. Antioxidant activity and inhibition of ultraviolet radiationinduced skin damage of selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate[J/OL]. Bioorg. Chem., 2020, 105: 104431[2022-08-15]. . |
| 55 | 陈晓晨,白曼利,陈昭华,等.法夫酵母类胡萝卜素对UVA氧化损伤HSF细胞的保护作用[J].激光生物学报,2022,31(1):61-69. |
| 56 | 雷茜茜,赵松林,陈卫军,等.角鲨烯和维生素E抗皮肤衰老作用的比较研究[J].食品工业科技,2013,34(13): 91-93, 98. |
| 57 | COIRIER M, LASJAUNIAS E, CLOSS B.酵母多肽:一种真实有效的防脱生发成分[J].日用化学品科学,2018,41(4):40-43. |
| 58 | BOO Y C. Human skin lightening efficacy of resveratrol and its analogs: from in vitro studies to cosmetic applications[J/OL]. Antioxidants (Basel), 2019, 8(9): 332[2022-08-15]. . |
| 59 | GOROUHI F, MAIBACH H I. Role of topical peptides in preventing or treating aged skin[J]. Int. J. Cosmetic Sci., 2009, 31: 327-345. |
| 60 | ROSSETTI D, KIELMANOWICZ M G, VIGODMAN S, et al.. A novel anti-ageing mechanism for retinol: induction of dermal elastin synthesis and elastin fibre formation[J]. Int. J. Cosmetic Sci., 2011, 33: 62-69. |
| 61 | ZASADA M, BUDZISZ E. Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments[J]. Postep. Derm. Alergol., 2019, 36(4): 392-397. |
| 62 | CAO Y, WANG P, ZHANG G, et al.. Administration of skin care regimenscontaining β-glucan for skin recovery after fractional lasertherapy: a split-face, double-blinded, vehicle-controlled study[J]. J. Cosmet. Dermatol., 2021, 20(6): 1756-1762. |
| 63 | 刘灿,姜燕飞,李勇.β-葡聚糖对创面愈合过程中细胞作用的研究进展[J].中国预防医学杂志,2016,17(1):64-68. |
| [1] | Zhaohui CUI, Ling GUO, Xudong SHEN, Yi LIN, Lili ZHAI. Research Progress on Yeast Expression of Therapeutic Recombinant Proteins [J]. Current Biotechnology, 2025, 15(3): 380-387. |
| [2] | ZHANG Xiangxiang, TENG Yantong, CHEN Tao*. Research on AtEXD Participating in Response to Salt Stress in Plant [J]. Curr. Biotech., 2021, 11(1): 61-68. |
| [3] | LI Yanhu, NIU Yaoxing, LIU Xiaoxia, GUO Juan, DENG Zhanrui, YUN Jianmin*. Optimization of Freeze-drying Microbial Agent Preparation of Direct Vat Aroma-enhancing Yeast Starter for Jiangshui Production [J]. Curr. Biotech., 2018, 8(5): 441-449. |
| [4] | WANG Ting, GE Huai-Na, GUO Hong*. Progress on Application of Yeast Two-hybrid Technique [J]. Curr. Biotech., 2015, 5(5): 392-396. |
| [5] | ZHANG Yun-peng, WEN Tong, JIANG Wei*. The Research Progress of Escherichia coli Expression Systems and Yeast Expression Systems [J]. Curr. Biotech., 2014, 4(6): 389-393. |
| [6] | CHANG Liang, LIU Xiao-zhi, MENG Ya-juan, MA Zhi-jun, GAO Jian. Progress in Engineering of Yeast Secretion System [J]. Curr. Biotech., 2013, 3(3): 185-189. |
| [7] | YANG Yang, ZHANG Fu-yun*, CANG Gui-lu, WANG Bin, LU Hang. Research Advances in the Application of Bioactive Substances Produced by Bacillus licheniformis [J]. Curr. Biotech., 2013, 3(1): 22-26. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||