| 1 | 李杰,罗江宏,杨萍.病毒诱导基因沉默在蔬菜作物上应用的研究进展[J].中国农业科学, 2021, 54(10): 2154-2166. | 
																													
																							| 2 | 宋震,李中安,周常勇.病毒诱导的基因沉默(VIGS)研究进展[J].园艺学报, 2014, 41(9): 1885-1894. | 
																													
																							| 3 | 季娜娜,闵德栋,邵淑君,等. VIGS载体在蔬菜作物中的应用研究进展[J].植物生理学报, 2016, 52(6): 810-816. | 
																													
																							| 4 | GALIS I, SCHUMAN M C, GASE K, et al.. The use of VIGS technology to study plant-herbivore interactions[J]. Methods Mol. Biol., 2013, 975: 109-137. | 
																													
																							| 5 | DOMMES A B, GROSS T, HERBERT D B, et al.. Virus-induced gene silencing: empowering genetics in non-model organisms[J]. J. Exp. Bot., 2019, 70(3): 757-770. | 
																													
																							| 6 | REEKUMAR J, SADIQ P . A. M, RAJU S, et al.. In silico analysis of carotenoid biosynthesis pathway in cassava (Manihot esculenta Crantz)[J/OL]. J. Genet., 2022, 101: 2[2022-01-04]. . | 
																													
																							| 7 | MALIK A I, KONGSIL P, NGUYỄN V A, et al.. Cassava breeding and agronomy in Asia: 50 years of history and future directions[J]. Breed Sci., 2020, 70(2): 145-166. | 
																													
																							| 8 | LI H Q, SAUTTER C, POTRYKUS I, et al.. Genetic transformation of cassava (Manihot esculenta Crantz)[J]. Nat. Biotechnol., 1996, 14(6): 736-740. | 
																													
																							| 9 | LIU J, ZHENG Q, MA Q, et al.. Cassava genetic transformation and its application in breeding[J]. J. Integr. Plant Biol., 2011, 53(7): 552-569. | 
																													
																							| 10 | GOMEZ M A, LIN Z D, MOLL T, et al.. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence[J]. Plant Biotechnol. J., 2019, 17(2): 421-434. | 
																													
																							| 11 | JØGENSEN K, BAK S, BUSK P K, et al.. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology[J]. Plant Physiol., 2005, 139(1): 363-374. | 
																													
																							| 12 | ODIPIO J, ALICAI T, INGELBRECHT I, et al.. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava[J/OL]. Front. Plant Sci., 2017, 8: 1780[2022-01-04]. . | 
																													
																							| 13 | OGWOK E, ODIPIO J, HALSEY M, et al.. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease[J]. Mol. Plant Pathol., 2012, 13(9): 1019-1031. | 
																													
																							| 14 | ZHANG H, YE Z, LIU Z, et al.. The cassava NBS-LRR genes confer resistance to cassava bacterial blight[J/OL]. Front. Plant Sci., 2022, 13: 790140[2022-04-04]. . | 
																													
																							| 15 | BEYENE G, CHAUHAN R D, GEHAN J, et al.. Cassava shrunken-2 homolog MeAPL3 determines storage root starch and dry matter content and modulates storage root postharvest physiological deterioration[J]. Plant Mol. Biol., 2022, 109(3): 283-299. | 
																													
																							| 16 | HE X, LIU G, LI B, et al.. Functional analysis of the heterotrimeric NF-Y transcription factor complex in cassava disease resistance[J]. Ann. Bot., 2020, 124(7): 1185-1198. | 
																													
																							| 17 | FERNANDEZ-POZO N, ROSLI H G, MARTIN G B, et al.. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics[J]. Mol. Plant, 2015, 8(3): 486-488. | 
																													
																							| 18 | TUO D, ZHOU P, YAN P, et al.. A cassava common mosaic virus vector for virus‑induced gene silencing in cassava[J/OL]. BMC biology, 2021, 17(1): 74[2022-01-15]. . | 
																													
																							| 19 | 姚晓云,蓝海军,邓伟,等.水稻淡白叶突变体的叶绿素含量测定及农艺性状比较分析[J].江西农业学报, 2020, 32(12): 12-15. | 
																													
																							| 20 | BECKER A, LANGE M. VIGS-Genomics goes functional[J]. Trends Plant Sci., 2010, 15(1): 1-4. | 
																													
																							| 21 | JIA H, LU D, SUN J, et al.. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening[J]. J. Exp. Bot., 2013, 64(6): 1677-1687. | 
																													
																							| 22 | 王玲,汤浩茹,王小蓉,等.利用VIGS技术研究草莓FaMYB5的功能[J].园艺学报, 2017, 44(1): 33-42. | 
																													
																							| 23 | HO L, KLEMENS P, NEUHAUS H, et al.. SlSWEET1a is involved in glucose import to young leaves in tomato plants[J]. J. Exp. Bot., 2019,70(12): 3241-3254. | 
																													
																							| 24 | SCHACHTSIEK J, HUSSAIN T, AZZOUHRI K, et al.. Virus induced gene silencing (VIGS) in Cannabis sativa L.[J/OL]. Plant Methods, 2019, 15: 157[2022-05-08]. . |