Current Biotechnology ›› 2022, Vol. 12 ›› Issue (4): 481-489.DOI: 10.19586/j.2095-2341.2022.0115
• Special Forum on Hydrogen Biomedical Science • Next Articles
Yifei SONG(
), Fei XIE(
), Chen MA, Xuemei MA(
)
Received:2022-06-30
Accepted:2022-07-03
Online:2022-07-25
Published:2022-08-10
Contact:
Fei XIE,Xuemei MA
通讯作者:
谢飞,马雪梅
作者简介:宋怡菲 E-mail:S202165052@emails.bjut.edu.cn
基金资助:CLC Number:
Yifei SONG, Fei XIE, Chen MA, Xuemei MA. Research Progress on Hydrogenase Activity in Higher Plants[J]. Current Biotechnology, 2022, 12(4): 481-489.
宋怡菲, 谢飞, 马晨, 马雪梅. 高等植物氢化酶活性研究进展[J]. 生物技术进展, 2022, 12(4): 481-489.
| 植物种类 | 产氢/耗氢现象 | 发生部位/过程 | 参考文献 |
|---|---|---|---|
| 冬黑麦、萝卜、豌豆、番茄 | 产氢 | 种子萌发过程中 | [ |
| 豌豆 | 产氢+耗氢 | 离体叶绿体 | [ |
| 大麦 | 产氢 | 厌氧培养的大麦幼苗 | [ |
| 豌豆、菠菜 | 产氢 | 离体叶绿体 | [ |
| 水稻 | 产氢 | 水稻幼苗 | [ |
| 拟南芥 | 产氢 | 拟南芥幼苗 | [ |
| 苜蓿 | 产氢 | 苜蓿幼苗 | [ |
| 猕猴桃 | 产氢 | 新鲜果肉组织 | [ |
| 番茄 | 产氢 | 新鲜果肉组织 | [ |
| 洋桔梗 | 产氢 | 新鲜花茎 | [ |
| 绿豆、辣椒 | 产氢+耗氢 | 植物幼苗中纯化出的质膜 | [ |
Table 1 Hydrogen metabolism in different higher plants
| 植物种类 | 产氢/耗氢现象 | 发生部位/过程 | 参考文献 |
|---|---|---|---|
| 冬黑麦、萝卜、豌豆、番茄 | 产氢 | 种子萌发过程中 | [ |
| 豌豆 | 产氢+耗氢 | 离体叶绿体 | [ |
| 大麦 | 产氢 | 厌氧培养的大麦幼苗 | [ |
| 豌豆、菠菜 | 产氢 | 离体叶绿体 | [ |
| 水稻 | 产氢 | 水稻幼苗 | [ |
| 拟南芥 | 产氢 | 拟南芥幼苗 | [ |
| 苜蓿 | 产氢 | 苜蓿幼苗 | [ |
| 猕猴桃 | 产氢 | 新鲜果肉组织 | [ |
| 番茄 | 产氢 | 新鲜果肉组织 | [ |
| 洋桔梗 | 产氢 | 新鲜花茎 | [ |
| 绿豆、辣椒 | 产氢+耗氢 | 植物幼苗中纯化出的质膜 | [ |
| 研究对象 | 作用领域 | 作用效果 | 参考文献 |
|---|---|---|---|
| 拟南芥 | 参与植物抗生物与非生物胁迫 | 提高拟南芥耐盐性 | [ |
| 紫花苜蓿 | 参与植物抗生物与非生物胁迫 | 增强苜蓿对百草枯诱导的氧化胁迫耐受性 | [ |
| 参与植物抗生物与非生物胁迫 | 增强苜蓿的镉耐受性 | [ | |
| 参与植物抗生物与非生物胁迫 | 缓解苜蓿的渗透胁迫 | [ | |
| 水稻 | 参与植物抗生物与非生物胁迫 | 缓解水稻种子萌发过程中的盐胁迫 | [ |
| 黄瓜 | 参与植物抗生物与非生物胁迫 | 缓解黄瓜植株所受干旱胁迫 | [ |
| 猕猴桃 | 改善植物品质与保鲜 | 延缓猕猴桃采后成熟和衰老 | [ |
| 洋桔梗 | 改善植物品质与保鲜 | 延缓洋桔梗鲜切花花瓣衰老 | [ |
| 番茄 | 改善植物品质与保鲜 | 抑制番茄果实贮藏中亚硝酸盐的积累 | [ |
| 小苍兰 | 改善植物品质与保鲜 | 增加叶片、花茎长度与花朵直径 | [ |
| 番茄 | 参与调控植物生长发育 | 参与诱导番茄幼苗的侧根形成 | [ |
| 黑麦 | 参与调控植物生长发育 | 促进黑麦种子的萌发 | [ |
| 万寿菊 | 参与调控植物生长发育 | 调控万寿菊的不定根发育 | [ |
Table 2 Regulation of some physiological processes in higher plants by hydrogen molecules
| 研究对象 | 作用领域 | 作用效果 | 参考文献 |
|---|---|---|---|
| 拟南芥 | 参与植物抗生物与非生物胁迫 | 提高拟南芥耐盐性 | [ |
| 紫花苜蓿 | 参与植物抗生物与非生物胁迫 | 增强苜蓿对百草枯诱导的氧化胁迫耐受性 | [ |
| 参与植物抗生物与非生物胁迫 | 增强苜蓿的镉耐受性 | [ | |
| 参与植物抗生物与非生物胁迫 | 缓解苜蓿的渗透胁迫 | [ | |
| 水稻 | 参与植物抗生物与非生物胁迫 | 缓解水稻种子萌发过程中的盐胁迫 | [ |
| 黄瓜 | 参与植物抗生物与非生物胁迫 | 缓解黄瓜植株所受干旱胁迫 | [ |
| 猕猴桃 | 改善植物品质与保鲜 | 延缓猕猴桃采后成熟和衰老 | [ |
| 洋桔梗 | 改善植物品质与保鲜 | 延缓洋桔梗鲜切花花瓣衰老 | [ |
| 番茄 | 改善植物品质与保鲜 | 抑制番茄果实贮藏中亚硝酸盐的积累 | [ |
| 小苍兰 | 改善植物品质与保鲜 | 增加叶片、花茎长度与花朵直径 | [ |
| 番茄 | 参与调控植物生长发育 | 参与诱导番茄幼苗的侧根形成 | [ |
| 黑麦 | 参与调控植物生长发育 | 促进黑麦种子的萌发 | [ |
| 万寿菊 | 参与调控植物生长发育 | 调控万寿菊的不定根发育 | [ |
| 1 | TORRES V, BALLESTEROS A, FERNÁNDEZ V M. Expression of hydrogenase activity in barley (Hordeum vulgare L.) after anaerobic stress[J]. Arch. Biochem. Biophys., 1986, 245(1): 174-178. |
| 2 | XIE Y, MAO Y, ZHANG W, et al.. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis [J]. Plant Physiol., 2014, 165(2): 759-773. |
| 3 | JIN Q, ZHU K, CUI W, et al.. Hydrogen-modulated stomatal sensitivity to abscisic acid and drought tolerance via the regulation of apoplastic pH in Medicago sativa [J]. J. Plant Grow. Regul., 2016, 35(2): 565-573. |
| 4 | MAL'TSEV S V, ALLAKHVERDIEV S I, KLIMOV V V, et al.. Hydrogen evolution by subchloroplast preparations of photosystem II from pea and spinach[J]. FEBS Lett., 1988, 240(1-2): 1-5. |
| 5 | XIE X Y, MAO Y, LAI D, et al.. H2 enhances Arabidopsis salt tolerance by manipulating ZAT1012-mediated antioxidant defence and controlling sodium exclusion[J]. PLoS ONE, 2012, 7(11):1-11. |
| 6 | JIN Q, ZHU K, CUI W, et al.. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat‐induced oxidative stress via the modulation of heme oxygenase‐1 signaling system[J]. Plant Cell Environ., 2013, 36(5): 956-969. |
| 7 | XU S, ZHU S, JIANG Y, et al.. Hydrogen-rich water alleviates salt stress in rice during seed germination[J]. Plant Soil, 2013, 370(1): 47-57. |
| 8 | CUI W, YAO P, PAN J, et al.. Transcriptome analysis reveals insight into molecular hydrogen-induced cadmium tolerance in alfalfa: the prominent role of sulfur and (homo) glutathione metabolism[J]. BMC Plant Biol., 2020, 20(1): 1-19. |
| 9 | SU J, ZHANG Y, NIE Y, et al.. Hydrogen-induced osmotic tolerance is associated with nitric oxide-mediated proline accumulation and reestablishment of redox balance in alfalfa seedlings[J]. Environ. Exp. Bot., 2018, 147(1):249-260. |
| 10 | HU H, LI P, WANG Y, et al.. Hydrogen-rich water delays postharvest ripening and senescence of kiwifruit[J]. Food Chem., 2014, 156(1):100-109. |
| 11 | HU H, ZHAO S, LI P, et al.. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis[J]. Posthar. Biol. Technol., 2018, 135(1):123-130. |
| 12 | SU J, NIE Y, ZHAO G, et al.. Endogenous hydrogen gas delays petal senescence and extends the vase life of lisianthus cut flowers[J]. Posthar. Biol. Technol., 2019, 147(1):148-155. |
| 13 | ZHANG Y, ZHAO G, CHENG P, et al.. Nitrite accumulation during storage of tomato fruit as prevented by hydrogen gas[J]. Int. J. Food Propert., 2019, 22(1): 1425-1438. |
| 14 | EMBLEY M, GIEZEN M, HORNER D S, et al.. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle[J]. Philos. Trans. Royal Soc. London B Biol. Sci., 2003, 358(1429): 191-203. |
| 15 | EFREMOV R G, SAZANOV L A. The coupling mechanism of respiratory complex I—a structural and evolutionary perspective[J]. Biochim. Biophys. Acta Bioenerg., 2012, 1817(10): 1785-1795. |
| 16 | LUBITZ W, OGATA H, RUDIGER O, et al.. Hydrogenases[J]. Chem. Rev., 2014, 114(8): 4081-4148. |
| 17 | DE LACEY A L, FERNANDEZ V M, ROUSSET M, et al.. Activation and inactivation of hydrogenase function and the catalytic cycle: Spectro electrochemical studies[J]. Chem. Rev., 2007, 107(10): 4304-4330. |
| 18 | AGUILERA-CAMPOS K I, STAIRS C W. Hydrogen metabolism: a eukaryote taps into the electron sink[J]. Curr. Biol., 2022, 32(1): 49-51. |
| 19 | STEPHENSON M, STICKLAND L H. Hydrogenase: A bacterial enzyme activating molecular hydrogen: the properties of the enzyme[J]. Biochem. J., 1931, 25(1):205-214. |
| 20 | CHEN J S, MORTENSON L E. Purification and properties of hydrogenase from Clostridium pasteurianum W5[J]. Biochim. Biophys. Acta Protein Struct., 1974, 371(2): 283-298. |
| 21 | TAMAGNINI P, LEITO E, OLIVEIRA P, et al.. Cyanobacterial hydrogenases: diversity, regulation and applications[J]. FEMS Microbiol. Rev., 2007, 31(6):692-720. |
| 22 | HAPPE T, NABER J D. Isolation, characterization and N‐terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii [J]. Eur. J. Biochem., 1993, 214(2): 475-481. |
| 23 | HAPPE T, MOSLER B, NABER J D. Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii [J]. Eur. J. Biochem., 1994, 222(3): 769-774. |
| 24 | HEMSCHEMEIER A, FOUCHARD S, COURNAC L, et al.. Hydrogen production by Chlamydomonas reinhardtii: An elaborate interplay of electron sources and sinks[J]. Planta, 2008, 227(2): 397-407. |
| 25 | FORESTIER M, KING P, ZHANG L, et al.. Expression of two [Fe]‐hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions[J]. Eur. J. Biochem., 2003, 270(13): 2750-2758. |
| 26 | FLORIN L, TSOKOGLOU A, HAPPE T. A novel type of iron hydrogenase in the green Alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain[J]. J. Biol. Chem., 2001, 276(9): 6125-6132. |
| 27 | COURNAC L, GUEDENEY G, PELTIER G, et al.. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type Ⅰ NADPH-dehydrogenase complex[J]. J. Bacteriol., 2004, 186(6): 1737-1746. |
| 28 | NÝVLTOVÁ E, ŠUTÁK R, HARANT K, et al.. NIF-type iron-sulfur cluster assembly system is duplicated and distributed in the mitochondria and cytosol of Mastigamoeba balamuthi [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(18): 7371-7376. |
| 29 | BOICHENKO E A. Evolution of hydrogen by isolated chloroplasts[J]. Compt. Rend. Acad. Sci. USSR, 1946, 52(1):521-524. |
| 30 | GIUMARRO C, SIEGEL S M. Hydrogen metabolism in higher plants[J]. Plant Physiol., 1964, 39(3): 303-306. |
| 31 | MAL'TSEV S V, KRASNOVSKII A A. Production and consumption of molecular hydrogen by isolated chloroplasts of higher plants[J]. Soviet Plant Physiol., 1982, 29(5): 951-958. |
| 32 | ZENG J, ZHANG M, SUN X. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants[J]. PLoS ONE, 2013, 8(8): 1-10. |
| 33 | ZHANG X, XIE F, ZHANG Z, et al.. Hydrogen evolution and absorption phenomena in the plasma membrane of Vigna radiata and Capsicum annuum [J]. J. Plant Growth Regul., 2022, 5(1):1-11. |
| 34 | 沈文飚, 苏久厂, 孙学军.氢气植物学效应的研究进展[J].南京农业大学学报, 2018, 41(3):392-401. |
| 35 | ZULFIQAR F, RUSSELLG, HANCOCK J T. Molecular hydrogen in agriculture[J]. Planta, 2021, 254(3): 1-14. |
| 36 | CHEN Y, WANG M, HU L, et al.. Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress[J].Front. Plant Sci., 2017, 8(128): 1-16. |
| 37 | 宋韵琼,沙米拉·太来提,杜红梅.富氢水处理对小苍兰生长发育的影响[J].上海交通大学学报(农业科学版),2016,34(3):55-61, 96. |
| 38 | CAO Z, DUAN X, YAO P, et al.. Hydrogen gas is involved in auxin-induced lateral root formation by modulating nitric oxide synthesis[J]. Int. J. Mol. Sci., 2017, 18(2084):1-15. |
| 39 | RENWICK G M, GIUMARRO C, SIEGEL S M. Hydrogen metabolism in higher plants[J]. Plant Physiol., 1964, 39(3):303-306. |
| 40 | ZHU Y, LIAO W. The metabolic constituent and rooting-related enzymes responses of marigold explants to hydrogen gas during adventitious root development[J]. Theor. Exp. Plant Physiol., 2017, 29(2): 77-85. |
| 41 | NAKAMURA M, BUZAS D M, KATO A, et al.. The role of Arabidopsis thaliana NAR 1, a cytosolic iron-sulfur cluster assembly component, in gametophytic gene expression and oxidative stress responses in vegetative tissue[J]. New Phytol., 2013, 199(4): 925-935. |
| 42 | MONDY S, LENGLET A, COSSON V, et al.. GOLLUM [Fe-Fe]‐hydrogenase‐like proteins are essential for plant development in normoxic conditions and modulate energy metabolism[J]. Plant Cell Environ., 2014, 37(1): 54-69. |
| 43 | EMBLEY T M, MARTIN W. Eukaryotic evolution, changes and challenges[J]. Nature, 2006, 440(7084): 623-630. |
| 44 | MÜER M Ó. The hydrogenosome[J]. Microbiology, 1993, 139(12): 2879-2889. |
| 45 | BOXMA B, DE GRAAF R M, STAAY G W M, et al.. An anaerobic mitochondrion that produces hydrogen[J]. Nature, 2005, 434(7029): 74-79. |
| 46 | TIELENS A G M, ROTTE C, HELLEMOND J J, et al.. Mitochondria as we don't know them[J]. Trends Biochem. Sci., 2002, 27(11): 564-572. |
| 47 | BÖHM R, SAUTER M, BÖCK A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenylase components[J]. Mol. Microbiol., 1990, 4(2): 231-243. |
| 48 | MOPARTHI V K, HÄGERHÄLL C. The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits[J]. J. Mol. Evol., 2011, 72(5): 484-497. |
| 49 | YU H, WU C H, SCHUT G J, et al.. Structure of an ancient respiratory system[J]. Cell, 2018, 173(7): 1636-1649. |
| 50 | ZHANG X, ZHANG Z, WEI Y, et al.. Mitochondria in higher plants possess H2 evolving activity which is closely related to complex I[J/OL]. arXiv,2001,02132: 2020[2022-07-03].. |
| 51 | 马雪梅,张鑫,谢飞,等.氢气生物学作用的生物酶基础[J].生物技术进展,2020,10(1):15-22. |
| [1] | HanXiao MA. Development of qPCR Standard Curves for Monitoring Population Dynamics in a Dual-bacterial Fermentative Hydrogen Production System [J]. Current Biotechnology, 2025, 15(2): 325-332. |
| [2] | Yiwei ZHAO, Tianlu GAO, Jiahui ZHANG, Yuqi WANG, Pan CHANG, Hong WANG. Research Progress on the Imbalance of Mitochondrial Quality Control Leading to Renal Interstitial Fibrosis in Diabetic Kidney Disease [J]. Current Biotechnology, 2024, 14(5): 825-831. |
| [3] | Jiaqi SUN, Jia GUO, Chuang ZHANG, Qing LIU, Ziyu WANG, Hanchao XIA, Buxuan QIAN, Fangfang ZHAO, Qi WANG, Jianfeng LIU, Xiangguo LIU. Research Progress of Phosphite Dehydrogenase in Genetically Engineered Microorganisms and Plants [J]. Current Biotechnology, 2024, 14(2): 173-181. |
| [4] | Zijia LIU, Xue JIANG, Yang YI, Meng WANG, Cheng MA, Yifei SONG, Fei XIE. Research Progress on the Relationship Between Hydrogen and Intestinal Flora [J]. Current Biotechnology, 2022, 12(6): 847-852. |
| [5] | MA Xuemei1, ZHANG Xin1, XIE Fei1, ZHAO Pengxiang1, ZHANG Zhao1, YI Yang1, ZHANG Xiaokang1, MA Shengnan1, LI Qinjian1, LYU Baobei1, LIU Mengyu, YAO Mawulikplimi Adzavon1, SUN Xuejun2, LI Yingxian3. Bio-enzyme Basis of Hydrogen in Biological System [J]. Curr. Biotech., 2020, 10(1): 15-22. |
| [6] | LIU Mengyu1, XIE Fei1, ZHANG Xin1, ZHAO Pengxiang1,2*. Review of Biomarkers for Glioblastoma [J]. Curr. Biotech., 2019, 9(2): 129-138. |
| [7] | MENG Xiao-qing1, HOU Zhi-xia1*, ZHANG Lan2. Progress on Molecular and Genetic Mechanisms of Floral Control in Higher Plants [J]. Curr. Biotech., 2013, 3(1): 1-6. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||