| [1] |
VAN DOORSLAER K. Evolution of the papillomaviridae[J]. Virology, 2013, 445(1-2): 11-20.
|
| [2] |
TOMMASINO M. The human papillomavirus family and its role in carcinogenesis[J]. Semin. Cancer Biol., 2014, 26: 13-21.
|
| [3] |
DE VILLIERS E M. Cross-roads in the classification of papillomaviruses[J]. Virology, 2013, 445(1-2): 2-10.
|
| [4] |
WHO. Cervical cancer[J].Am. Fam. Physician.,2022,61(5): 1369-1376.
|
| [5] |
RODEN R B, DAY P M, BRONZO B K, et al.. Positively charged termini of the L2 minor capsid protein are necessary for papillomavirus infection[J]. J. Virol., 2001, 75(21): 10493-10497.
|
| [6] |
OYOUNI A A A. Human papillomavirus in cancer: infection, disease transmission, and progress in vaccines[J]. J. Infect. Public Health, 2023, 16(4): 626-631.
|
| [7] |
田国良,郝雨欣,王继伟.人乳头瘤病毒疫苗的研究现状及接种政策[J].上海预防医学,2024,36(3):297-302.
|
|
TIAN G L, HAO Y X, WANG J W. Research status and vaccination policy of human papillomavirus vaccine[J].Shanghai J. Prevent. Med., 2024, 36(3): 297-302.
|
| [8] |
许惠惠,朱海燕,章彤彤,等.高危型人乳头状瘤病毒感染在宫颈病变进展中的风险研究[J].中华实验和临床病毒学杂志,2017,31(4):302-306.
|
|
XU H H, ZHU H Y, ZHANG T T, et al.. Risk evaluation of high-risk human papillomavirus genotyping in cervical lesions progress[J]. Chin. J. Exp. Clin. Virol., 2017, 31(4): 302-306.
|
| [9] |
KWAK K, JIANG R, WANG J W, et al.. Impact of inhibitors and L2 antibodies upon the infectivity of diverse alpha and beta human papillomavirus types[J/OL]. PLoS ONE, 2014, 9(5): e97232[2025-05-10]. .
|
| [10] |
BELLEW S, DEL ROSSO J Q. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women[J]. Dermatol. Surg., 2010, 2010: 189-190.
|
| [11] |
HARPER D M, FRANCO E L, WHEELER C M, et al.. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial[J]. Lancet, 2006, 367(9518): 1247-1255.
|
| [12] |
BOXUS M, FOCHESATO M, MISEUR A, et al.. Broad cross-protection is induced in preclinical models by a human papillomavirus vaccine composed of L1/L2 chimeric virus-like particles[J]. J. Virol., 2016, 90(14): 6314-6325.
|
| [13] |
CHEN W, XIAO H, LIN M, et al.. Preparation and evaluation of IgY against human papillomavirus[J/OL]. J. Virol. Meth., 2025, 334: 115115[2025-05-10]. .
|
| [14] |
HADI N, NAZARIAN S, ROUHI S, et al.. Production of egg yolk antibody (IgY) against a chimeric protein containing IpaD, StxB, and TolC antigens from Shigella: an investigation of its prophylactic effects against Shiga toxin (Stx) and Shigella dysenteriae in vitro and in vivo [J/OL]. Heliyon, 2024, 10(4): e26361[2025-05-10]. .
|
| [15] |
LEE E N, SUNWOO H H, MENNINEN K, et al.. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium [J]. Poult. Sci., 2002, 81(5): 632-641.
|
| [16] |
DROLET M, BÉNARD É, CBOILY M, et al.. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis[J]. Lancet Infect. Dis., 2015, 15(5): 565-580.
|
| [17] |
聂建辉,宁婷婷,陈瑞峰,等.人乳头瘤病毒假病毒中和抗体检测方法在临床样本检测中的验证[J].中华微生物学和免疫学杂志,2018,38(7):529-534.
|
|
NIE J H, NING T T, CHEN R F, et al.. Validation of a pseudovirus-based neutralization assay for detection of human papillomavirus antibodies in human serum samples[J]. Chin. J. Microbiol. Immunol., 2018, 38(7): 529-534.
|
| [18] |
王大宁,张丽,刘亚静,等.基于假病毒的人乳头瘤病毒小鼠感染模型的建立及HPV16VLP疫苗保护性评价[J].中国生化药物杂志,2015,35(11):5-10.
|
|
WANG D N, ZHANG L, LIU Y J, et al.. Establishment of human papillomavirus pseudovirion infection model in mouse for potency evaluation of HPV16 VLP vaccine[J]. Chin. J. Biochem. Pharm., 2015, 35(11): 5-10.
|
| [19] |
WILLIAMSON A L. Recent developments in human papillomavirus (HPV) vaccinology[J/OL]. Viruses, 2023, 15(7): 1440[2025-05-10]. .
|
| [20] |
CRIPPIN T, TOUNKARA K, MUNIR H, et al.. Our daughters-ourselves: evaluating the impact of paired cervical cancer screening of mothers with HPV vaccination for daughters to improve HPV vaccine coverage in Bamako, Mali[J/OL]. Vaccine, 2024, 12(9): 1019[2025-05-10]. .
|
| [21] |
GOETSCHIUS D J, HARTMANN S R, SUBRAMANIAN S, et al.. High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility[J/OL]. Sci. Rep., 2021, 11(1): 3498[2025-05-10]. .
|
| [22] |
RUBIO I, SEITZ H, CANALI E, et al.. The N-terminal region of the human papillomavirus L2 protein contains overlapping binding sites for neutralizing, cross-neutralizing and non-neutralizing antibodies[J]. Virology, 2011, 409(2): 348-359.
|
| [23] |
JAGU S, KARANAM B, GAMBHIRA R, et al.. Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines[J]. J. Natl. Cancer Inst., 2009, 101(11): 782-792.
|
| [24] |
AHMELS M, MARIZ F C, BRASPENNING-WESCH I, et al.. Next generation L2-based HPV vaccines cross-protect against cutaneous papillomavirus infection and tumor development[J/OL]. Front. Immunol., 2022, 13: 1010790[2025-05-10]. .
|
| [25] |
DAY P M, PANG Y S, KINES R C, et al.. A human papillomavirus (HPV) in vitro neutralization assay that recapitulates the in vitro process of infection provides a sensitive measure of HPV L2 infection-inhibiting antibodies[J]. Clin. Vaccine Immunol., 2012, 19(7): 1075-1082.
|
| [26] |
DI LONARDO A D, MARCANTE M L, POGGIALI F, et al.. Egg yolk antibodies against the E7 oncogenic protein of human papillomavirus type 16[J]. Arch. Virol., 2001, 146(1): 117-125.
|
| [27] |
BARZON L, SQUARZON L, MASIERO S, et al.. Neutralizing and cross-neutralizing antibody titres induced by bivalent and quadrivalent human papillomavirus vaccines in the target population of organized vaccination programmes[J]. Vaccine, 2014, 32(41): 5357-5362.
|
| [28] |
SCHILLER J T, DAY P M, KINES R C. Current understanding of the mechanism of HPV infection[J]. Gynecol. Oncol., 2010, 118(1): 12-17.
|
| [29] |
RUBIO I, BOLCHI A, MORETTO N, et al.. Potent anti-HPV immune responses induced by tandem repeats of the HPV16 L2 (20: 38) peptide displayed on bacterial thioredoxin[J]. Vaccine, 2009, 27(13): 1949-1956.
|
| [30] |
LAMPRECHT R L, KENNEDY P, HUDDY S M, et al.. Production of Human papillomavirus pseudovirions in plants and their use in pseudovirion-based neutralisation assays in mammalian cells[J/OL]. Sci. Rep., 2016, 6: 20431[2025-05-10]. .
|
| [31] |
SCHELLENBACHER C, KWAK K, FINK D, et al.. Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses[J]. J. Invest. Dermatol., 2013, 133(12): 2706-2713.
|
| [32] |
SCHELLENBACHER C, RODEN R, KIRNBAUER R. Chimeric L1-L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines[J]. J. Virol., 2009, 83(19): 10085-10095.
|
| [33] |
PASTRANA D V, BUCK C B, PANG Y S, et al.. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18[J]. Virology, 2004, 321(2): 205-216.
|