生物技术进展 ›› 2025, Vol. 15 ›› Issue (5): 804-811.DOI: 10.19586/j.2095-2341.2025.0065
收稿日期:2025-05-26
接受日期:2025-07-30
出版日期:2025-09-25
发布日期:2025-11-11
作者简介:刘莹莹E-mail: liuyybd@126.com
基金资助:
Yingying LIU1(
), Ruowei LI1,2, Yifei WANG1
Received:2025-05-26
Accepted:2025-07-30
Online:2025-09-25
Published:2025-11-11
摘要:
核酸检测在疾病诊断、治疗指导、及时防控以及科学研究与公共卫生监测等多个领域扮演着至关重要的角色。然而,传统的液体试剂在储存和运输过程中面临诸多挑战,如稳定性差、灵敏度下降等问题。随着冻干技术的进步,其在核酸检测试剂中的应用取得了显著成效。综述了冻干技术在核酸检测试剂中的应用进展,重点探讨了冻干保护剂的选择与浓度优化、冻干条件对试剂性能的影响、冻干后试剂形貌调控以及冻干试剂检测性能与稳定性的评价方法,旨在为后续相关研究提供科学指导,推动冻干技术在临床诊断、疾病预防和生物科学研究中的应用。
中图分类号:
刘莹莹, 李若薇, 王艺霏. 核酸检测试剂冻干技术及其评价方法研究进展[J]. 生物技术进展, 2025, 15(5): 804-811.
Yingying LIU, Ruowei LI, Yifei WANG. Research Progress on Freeze-drying Technology and Evaluation Methods of Nucleic Acid Detection Reagents[J]. Current Biotechnology, 2025, 15(5): 804-811.
| 分类 | 名称 |
|---|---|
| 糖类 | 蔗糖、海藻糖、葡萄糖、乳糖、麦芽糖、果聚糖 |
| 醇类 | 甘油、甘露醇、山梨醇、肌醇、木糖醇 |
| 氨基酸类 | 甘氨酸、精氨酸、组氨酸、色氨酸、丙氨酸、丝氨酸 |
| 聚合物类 | 聚乙烯吡咯烷酮、聚乙二醇、牛血清白蛋白、右旋糖酐 |
| 表面活性剂 | 吐温80、曲拉通X-100、十二烷基硫酸钠 |
| 盐类 | 磷酸盐、枸橼酸盐、柠檬酸盐、醋酸盐、氯化钠 |
表1 常见的冻干保护剂种类
Table 1 Common types of lyophilized protective agents
| 分类 | 名称 |
|---|---|
| 糖类 | 蔗糖、海藻糖、葡萄糖、乳糖、麦芽糖、果聚糖 |
| 醇类 | 甘油、甘露醇、山梨醇、肌醇、木糖醇 |
| 氨基酸类 | 甘氨酸、精氨酸、组氨酸、色氨酸、丙氨酸、丝氨酸 |
| 聚合物类 | 聚乙烯吡咯烷酮、聚乙二醇、牛血清白蛋白、右旋糖酐 |
| 表面活性剂 | 吐温80、曲拉通X-100、十二烷基硫酸钠 |
| 盐类 | 磷酸盐、枸橼酸盐、柠檬酸盐、醋酸盐、氯化钠 |
| 评价方法 | 评价内容 | 优点 | 缺点 |
|---|---|---|---|
| 物理评价 | 观察冻干试剂的颜色、形态等物理性质,确保其未发生明显变化;检测冻干试剂的溶解速度,评估其复溶性能 | 直观、简单,能够快速筛选出外观异常或溶解性能不佳的试剂 | 无法全面反映试剂的生物活性和化学稳定性,需要结合其他方法进行综合评估 |
| 检测性能评价 | 通过电泳法,比较冻干前后检测试剂扩增产物目标条带明亮程度;通过荧光定量PCR技术,比较冻干前后检测试剂扩增曲线变化,Ct 值变化进行评估 | 能够直接反映试剂对样本的检测灵敏度,是评估试剂质量的重要指标 | 需要专业的实验条件和操作技能,且实验周期较长,成本较高 |
| 稳定性评价 | 通过多次重复实验,计算冻干试剂检测结果的准确性、精密度、特异性等指标;评估冻干试剂在存在干扰物的情况下的检测性能,确保其在复杂样本中的准确性 | 能够提供客观、量化的评估结果,有助于比较不同试剂之间的性能差异 | 周期较长且需要大量的实验数据和统计分析技术,对实验设计和数据处理能力要求较高 |
表2 冻干核酸检测试剂常用的评价方法及优缺点
Table 2 Commonly used evaluation methods and advantages and disadvantages of lyophilized nucleic acid detection reagents
| 评价方法 | 评价内容 | 优点 | 缺点 |
|---|---|---|---|
| 物理评价 | 观察冻干试剂的颜色、形态等物理性质,确保其未发生明显变化;检测冻干试剂的溶解速度,评估其复溶性能 | 直观、简单,能够快速筛选出外观异常或溶解性能不佳的试剂 | 无法全面反映试剂的生物活性和化学稳定性,需要结合其他方法进行综合评估 |
| 检测性能评价 | 通过电泳法,比较冻干前后检测试剂扩增产物目标条带明亮程度;通过荧光定量PCR技术,比较冻干前后检测试剂扩增曲线变化,Ct 值变化进行评估 | 能够直接反映试剂对样本的检测灵敏度,是评估试剂质量的重要指标 | 需要专业的实验条件和操作技能,且实验周期较长,成本较高 |
| 稳定性评价 | 通过多次重复实验,计算冻干试剂检测结果的准确性、精密度、特异性等指标;评估冻干试剂在存在干扰物的情况下的检测性能,确保其在复杂样本中的准确性 | 能够提供客观、量化的评估结果,有助于比较不同试剂之间的性能差异 | 周期较长且需要大量的实验数据和统计分析技术,对实验设计和数据处理能力要求较高 |
| [1] | 侯月娥, 伍建敏, 王凤求, 等. 全预混冻干PCR试剂检测草鱼呼肠孤病毒Ⅱ型的研究[J]. 水产科学, 2019, 38(1):80-85. |
| HOU Y E, WU J M, WANG F Q, et al.. Detection of grass carp reovirus Ⅱ by premixed freeze-dried PCR[J]. Fish. Sci., 2019, 38(1):80-85. | |
| [2] | 张建中,苏晓崧,张师音.POCT核酸检测试剂的冷冻干燥处理及其应用[J].临床检验杂志,2018,36(5):372-374. |
| ZHANG J Z, SU X S, ZHANG S Y. Freeze-drying treatment of POCT nucleic acid detection reagent and its application[J]. Chin. J. Clin. Lab. Sci., 2018, 36(5): 372-374. | |
| [3] | 粟元,朱龙佼,曹继娟,等.基于大肠埃希菌O157:H7的荧光定量冻干检测试剂盒的研制[J].生物技术通报,2022,38(3):264-275. |
| SU Y, ZHU L J, CAO J J, et al.. Development of fluorescence quantitative lyophilized detection kit based on Escherichia coli O157:H7[J]. Biotechnol. Bull., 2022, 38(3): 264-275. | |
| [4] | 刘莹莹,赵可心,王艺霏,等.生物检测试剂保藏技术研究进展[J].生物技术进展,2024,14(1):94-101. |
| LIU Y Y, ZHAO K X, WANG Y F, et al.. Research progress of biological detection reagent preservation technology[J]. Curr. Biotechnol., 2024, 14(1): 94-101. | |
| [5] | 顾开龙,赵莹,李欣格,等.水痘减毒活疫苗冻干工艺的优化[J].生物化工,2024,10(3):68-71. |
| GU K L, ZHAO Y, LI X G, et al.. Optimization of lyophilization of live attenuated Varicella vaccine[J]. Biol. Chem. Eng., 2024, 10(3): 68-71. | |
| [6] | 张梦垚.基于CRISPR技术的副溶血性弧菌核酸现场检测系统的研究[D].杭州:浙江大学,2021. |
| [7] | VAN DEN BERG L, ROSE D. Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: the reciprocal system KH2PO4Na2-HPO4-H2O[J]. Arch. Biochem. Biophys., 1959, 81(2): 319-329. |
| [8] | STRAMBINI G B, GABELLIERI E. Proteins in frozen solutions: evidence of ice-induced partial unfolding[J]. Biophys. J., 1996, 70(2): 971-976. |
| [9] | CHANG B S, KENDRICK B S, CARPENTER J F. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants[J]. J. Pharm. Sci., 1996, 85(12): 1325-1330. |
| [10] | LIAO Y H, BROWN M B, QUADER A, et al.. Protective mechanism of stabilizing excipients against dehydration in the freeze-drying of proteins[J]. Pharm. Res., 2002, 19(12): 1854-1861. |
| [11] | 田烨,吴明媛.生物制品冻干保护方法研究进展[J].中国医药生物技术,2018,13(1):73-76. |
| TIAN Y, WU M Y. Research progress on freeze-drying protection methods of biological products[J]. Chin. Med. Biotechnol., 2018, 13(1): 73-76. | |
| [12] | 李德志,郭大东,高宏丽,等.冻干重组人白细胞介素-2结晶性状的分析[J].齐鲁药事,2004,23(4):47-48. |
| LI D Z, GUO D D, GAO H L, et al.. Study on crystal of lyophilized recombinant human interleukin-2[J]. Shangdong Pharm. Ind., 2004, 23(4): 47-48. | |
| [13] | JONES L S, RANDOLPH T W, KOHNERT U, et al.. The effects of Tween 20 and sucrose on the stability of anti‐L‐selectin during lyophilization and reconstitution[J]. J. Pharm. Sci., 2001, 90(10): 1466-1477. |
| [14] | 张建中.应用于即时检测的核酸提取与扩增试剂冷冻干燥研究[D].厦门:厦门大学,2019. |
| [15] | 石晶,李锐,马玉杰,等.冻干重组碱性成纤维细胞生长因子无人血清白蛋白保护剂的研究[J].中国生化药物杂志,2003,23(5):244-245. |
| SHI J, LI R, MA Y J, et al.. Study on lyophilized recombinant basic fibroblast growth factor protective agent without human serum albumin[J]. Chin. J. Biochem. Pharm., 2003, 23(5): 244-245. | |
| [16] | HÜSSY D, STÄUBER N, LEUTENEGGER C M, et al.. Quantitative fluorogenic PCR assay for measuring ovine herpesvirus 2 replication in sheep[J]. Clin. Diagn. Lab. Immunol., 2001, 8(1): 123-128. |
| [17] | CARPENTER J F, CHANG B S, GARZON-RODRIGUEZ W, et al.. Rational design of stable lyophilized protein formulations: theory and practice[J]. Pharm. Biotechnol., 2002, 13: 109-133. |
| [18] | 孙刚,朱晓进,范春雷,等.一种冻干保护剂及其在核酸扩增试剂中的应用: CN111662902A[P].2020-09-15. |
| [19] | 高静,贾欣月,蔡亦梅,等.一种RNA扩增反应试剂的冻干保护剂及冻干方法: CN111560417B[P].2021-01-08. |
| [20] | KIM A I, AKERS M J, NAIL S L. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute[J]. J. Pharm. Sci., 1998, 87(8): 931-935. |
| [21] | 徐佳素.基于冷冻干燥技术的荧光定量PCR试剂常温保存方法的建立[D].福建厦门:厦门大学,2021. |
| [22] | NAGARAJ S, RAMLAL S, KINGSTON J, et al.. Thermostabilization of indigenous multiplex polymerase chain reaction reagents for detection of enterotoxigenic Staphylococcus aureus [J]. J. Microbiol. Immunol. Infect., 2018, 51(2): 191-198. |
| [23] | PIKAL M J. Freeze-drying of proteins: process, formulation, and stability[J]. J. Parent. Sci. Technol.,1990, 44(5): 115-139. |
| [24] | MATTERN M, WINTER G, KOHNERT U, et al.. Formulation of proteins invacuum-dried glasses.Ⅱ. Process and storage stability in sugar-freeamino acid systems[J]. Pharm. Dev. Techno., 1999, 4(2):199-208. |
| [25] | CROWE J H, CARPENTER J F, CROWE L M, et al.. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules[J]. Cryobiology, 1990, 27(3): 219-231. |
| [26] | CROWE J H, CARPENTER J F, CROWE L M. The role of vitrification in anhydrobiosis[J]. Annu. Rev. Physiol., 1998, 60: 73-103. |
| [27] | CARPENTER J F, PRESTRELSKI S J, ARAKAWA T. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. I. Enzyme activity and calorimetric studies[J]. Arch. Biochem. Biophys., 1993, 303(2): 456-464. |
| [28] | HELLMAN K, MILLER D S, CAMMACK K A. The effect of freeze-drying on the quaternary structure of L-asparaginase from Erwinia carotovora [J]. Biochim.Biophys. Acta., 749(2): 133-142. |
| [29] | WANG W. Lyophilization and development of solid protein pharmaceuticals[J]. Int. J. Pharm., 2000, 203(1-2): 1-60. |
| [30] | ANCHORDOQUY T J, CARPENTER J F. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state[J]. Arch. Biochem. Biophys., 1996, 332(2): 231-238. |
| [31] | FINI A, CAVALLARI C, OSPITALI F. Raman and thermal analysis of indomethacin/PVP solid dispersion enteric microparticles[J]. Eur. J. Pharm. Biopharm., 2008, 70(1): 409-420. |
| [32] | SARCIAUX J M, MANSOUR S, HAGEMAN M J, et al.. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying[J]. J. Pharm. Sci., 1999, 88(12): 1354-1361. |
| [33] | BAM N B, CLELAND J L, YANG J, et al.. Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions[J]. J. Pharm. Sci., 1998, 87(12): 1554-1559. |
| [34] | KATAKAM M, BELL L N, BANGA A K. Effect of surfactants on the physical stability of recombinant human growth hormone[J]. J. Pharm. Sci., 1995, 84(6): 713-716. |
| [35] | KREILGAARD L, JONES L S, RANDOLPH T W, et al.. Effect of Tween 20 on freeze-thawing- and agitation-induced aggregation of recombinant human factor [J]. J. Pharm. Sci., 1998, 87(12): 1597-1603. |
| [36] | MAA Y F, NGUYEN P A, HSU S W. Spray-drying of air-liquid interface sensitive recombinant human growth hormone[J]. J. Pharm. Sci., 1998, 87(2): 152-159. |
| [37] | KERWIN B A, HELLER M C, LEVIN S H, et al.. Effects of Tween 80 and sucrose on acute short-term stability and long-term storage at -20 ℃ of a recombinant hemoglobin[J]. J. Pharm. Sci., 1998, 87(9): 1062-1068. |
| [38] | PAGE C, DAWSON P, WOOLLACOTT D, et al.. Development of a lyophilization formulation that preserves the biological activity of the platelet-inducing cytokine interleukin-11 at low concentrations[J]. J. Pharm. Pharmacol., 2000, 52(1): 19-26. |
| [39] | 吴钇心,张雷,陈林丽,等.一种复合扩增反应试剂的冻干保护剂及冻干方法: CN117778543A[P].2024-03-29. |
| [40] | WURGES K, PFROMM P H, REZAC M E, et al.. Activation of subtilisin carlsberg in hexaneby lyophilization in the presence of fumed silica[J]. J. Mol. Catal. B Enzym., 2005, 34(1-6):18-24. |
| [41] | OTERO M C, ESPECHE M C, NADER-MACÍAS M E. Optimization of the freeze-drying media and survival throughout storage of freeze-dried Lactobacillus gasseri and Lactobacillus delbrueckii subsp. delbrueckii for veterinarian probiotic applications[J]. Process. Biochem., 2007, 42(10): 1406-1411. |
| [42] | 左梦楠,刘伟,全琦,等.保护剂对发酵乳杆菌BLHN3冻干存活率的影响[J].中国食品学报,2024,24(8):178-186. |
| ZUO M N, LIU W, QUAN Q, et al.. Effects of cryoprotectant to freeze-dried survival rate of Lactobacillus fermentum BLHN3 [J]. J. Chin. Inst. Food Sci. Technol., 2024, 24(8): 178-186. | |
| [43] | 倪春.医用生物制品的真空冷冻干燥技术[J].广西机械,1999(1):15-18. |
| NI C. Technology of vacuum freeze drying for medicinal & biological products[J]. Guangxi Mach., 1999(1): 15-18. | |
| [44] | OVERCASHIER D E, PATAPOFF T W, HSU C C. Lyophilization of protein formulations in vials: investigation of the relationship between resistance to vapor flow during primary drying and small-scale product collapse[J]. J. Pharm. Sci., 1999, 88(7): 688-695. |
| [45] | BARRESI A A, PISANO R, FISSORE D, et al.. Monitoring of the primary drying of a lyophilization process in vials[J]. Chem. Eng. Process., 2009, 48(1): 408-423. |
| [46] | REY L R. Thermal analysis of eutectics in freezing solutions[J]. Ann. NY. Acad. Sci., 1960, 85: 510-534. |
| [47] | NAGARAJ S, RAMLAL S, KINGSTON J, et al.. Therostabilization of indigenous multiplex polymerasechain reaction reagents for detection of enterotoxigenic Staphylococcus aureus [J]. J. Microbiol. Immunol. Infect., 2016, 51(2): 191-198. |
| [48] | 张京芳.低胆固醇鹌鹑蛋黄粉的制备及其生物功能评价初探[D].西安:陕西师范大学,2003. |
| [49] | KAMATH L. Practical technologies for lyophilization[J]. Genet. Eng. Biotechn., 2006, 26(20): 39-40. |
| [50] | JIN T H, NGUYEN L, QU T, et al.. Improved formulation and lyophilization cycle for rBCG vaccine[J]. Vaccine, 2011, 29(29-30): 4848-4852. |
| [51] | SEARLES J A, CARPENTER J F, RANDOLPH T W. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization[J]. J. Pharm. Sci., 2001, 90(7): 872-887. |
| [52] | FRANKS F. Freeze-drying of bioproducts: putting principles into practice[J]. Eur. J. Pharm. Biopharm., 1998, 45(3): 221-229. |
| [53] | TANG X, PIKAL M J. Design of freeze-drying processes for pharmaceuticals: practical advice[J]. Pharm. Res., 2004, 21(2): 191-200. |
| [54] | BJELOŠEVIĆ M, ZVONAR P A, PLANINŠEK O, et al.. Excipients in freeze-dried biopharmaceuticals: contributions toward formulation stability and lyophilisation cycle optimisation[J/OL]. Int. J. Pharm., 2020, 576: 119029[2025-09-19]. . |
| [55] | THAKRAL S, SONJE J, MUNJAL B, et al.. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations[J]. Adv. Drug Deliv. Rev., 2021, 173: 1-19. |
| [56] | 刘代春,于颖,卢存义.冻干显微镜研究进展[J].机电信息,2017(32):1-15. |
| LIU D C, YU Y, LU C Y. Research progress of freeze-drying microscope[J]. Mech. Electr. Inf., 2017(32): 1-15. | |
| [57] | PU Y E, MA L, DEAR B, et al.. Understanding the impact of microstructures on reconstitution and drying kinetics of lyophilized cake using X-ray microscopy and image-based simulation[J]. J. Pharm. Sci., 2023, 112(6): 1625-1634. |
| [58] | 张小瑜.卡尔费休法测定化工产品中水分含量的探讨[J].广州化工,2024,52(21):128-130. |
| ZHANG X Y. Exploration on karl fischer method for determining moisture content in chemical products[J]. Guangzhou Chem. Ind., 2024, 52(21): 128-130. | |
| [59] | TOMLINSON J A, BOONHAM N, HUGHES K J D, et al.. On-site DNA extraction and real-time PCR for detection of Phytophthora ramorum in the field[J]. Appl. Environ. Microbiol., 2005, 71(11): 6702-6710. |
| [60] | FRANKS F, SPIERS S, LEE M, et al.. Freeze-dried compositions for biochemical reactions: US20110244454[P]. 2011-10-06. |
| [61] | 国家食品药品监督管理总局. 体外诊断医疗器械 体外诊断试剂稳定性评价: [S].北京:中国标准出版社,2018. |
| [1] | 施玥, 韩尧, 李浩, 孙岩松. 场效应晶体管生物传感器在核酸检测中的应用进展[J]. 生物技术进展, 2025, 15(4): 597-605. |
| [2] | 咸莉梅, 胡怡, 李磊, 孙政玺, 何心尧, 李韬. 浅议小麦赤霉病抗性类型与鉴定方法的对应性[J]. 生物技术进展, 2021, 11(5): 554-559. |
| [3] | 格日乐其木格, 牛振峰, 董丹, 张涛涛, 峥嵘. CRISPR-Cas系统在微生物研究中的应用进展[J]. 生物技术进展, 2021, 11(3): 253-259. |
| [4] | 杨佳怡,陈桂芳,高运华,王志栋,吴枭. HPV核酸检测标准物质研究进展[J]. 生物技术进展, 2020, 10(6): 590-596. |
| [5] | 胡思宏,游国叶. 数字PCR在新型冠状病毒检测中的应用前景[J]. 生物技术进展, 2020, 10(6): 674-679. |
| [6] | 徐蕾,肖桂清,盛晓菁,戚智青,刁勇. PCR增强剂在核酸体外扩增检测技术的研究进展[J]. 生物技术进展, 2020, 10(2): 137-143. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||