| [1] |
HOPPES S M. The senior ferret (Mustela putorius furo)[J]. Vet. Clin. North Am. Exot. Anim. Pract., 2010, 13(1): 107-122.
|
| [2] |
GRUNTMAN A M, FLOTTE T R. Gene therapy and the use of animal models: why mice alone are not sufficient[J]. Hum. Gene Ther., 2022, 33(9-10): 477-478.
|
| [3] |
PHILLIPS K A, BALES K L, CAPITANIO J P, et al.. Why primate models matter[J]. Am. J. Primatol., 2014, 76(9): 801-827.
|
| [4] |
WONG J, LAYTON D, WHEATLEY A K, et al.. Improving immunological insights into the ferret model of human viral infectious disease[J]. Influenza Other Respir. Viruses, 2019, 13(6): 535-546.
|
| [5] |
IBRICEVIC A, PEKOSZ A, WALTER M J, et al.. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells[J]. J. Virol., 2006, 80(15): 7469-7480.
|
| [6] |
PULIT-PENALOZA J A, BELSER J A, BROCK N, et al.. Transmission of a human isolate of clade 2.3.4.4b A(H5N1) virus in ferrets[J]. Nature, 2024, 636(8043): 705-710.
|
| [7] |
PULIT-PENALOZA J A, BROCK N, BELSER J A, et al.. Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co-housed ferrets[J/OL]. Emerg. Microbes Infect., 2024, 13(1): 2332667[2025-06-06]. .
|
| [8] |
KIM Y I, KIM S G, KIM S M, et al.. Infection and rapid transmission of SARS-CoV-2 in ferrets[J]. Cell Host Microbe, 2020, 27(5): 704-709.
|
| [9] |
KIM Y I, YU K M, YKOH J, et al.. Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets[J/OL]. Nat. Commun., 2022, 13(1): 21[2025-06-06]. .
|
| [10] |
GUPTA T, SOMANNA N, ROWE T, et al.. Ferrets as a model for tuberculosis transmission[J/OL]. Front. Cell. Infect. Microbiol., 2022, 12: 873416[2025-06-06]. .
|
| [11] |
HUSSAIN S S, EDWARDS Y J K, LIBBY E F, et al.. Comparative transcriptomics in human COPD reveals dysregulated genes uniquely expressed in ferrets[J/OL]. Respir. Res., 2022, 23(1): 277[2025-06-06]. .
|
| [12] |
PEABODY L J E, LI Q, PAVELKOVA N, et al.. Pulmonary fibrosis ferret model demonstrates sustained fibrosis, restrictive physiology, and aberrant repair[J/OL]. BioRxiv, 2024: 2024.06.04.597198[2025-06-06]. .
|
| [13] |
KHOURY O, CLOUSE C, MCSWAIN M K, et al.. Ferret acute lung injury model induced by repeated nebulized lipopolysaccharide administration[J/OL]. Physiol. Rep., 2022, 10(20): e15400[2025-06-06].
|
| [14] |
WU C, CHEN X, CAI Y, et al.. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China[J]. JAMA Intern. Med., 2020, 180(7): 934-943.
|
| [15] |
AIZAWA K, LIU C, VEERAMACHANENI S, et al.. Development of ferret as a human lung cancer model by injecting 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)[J]. Lung Cancer, 2013, 82(3): 390-396.
|
| [16] |
FOX J G, OTTO G, TAYLOR N S, et al.. Helicobacter mustelae-induced gastritis and elevated gastric pH in the ferret (Mustela putorius furo)[J]. Infect. Immun., 1991, 59(6): 1875-1880.
|
| [17] |
FOX J G, CORREA P, TAYLOR N S, et al.. Helicobacter mustelae-associated gastritis in ferrets. An animal model of Helicobacter pylori gastritis in humans[J]. Gastroenterology. 1990, 99(2): 352-61.
|
| [18] |
PATTERSON M M, O'TOOLE P W, FORESTER N T, et al.. Failure of surface ring mutant strains of Helicobacter mustelae to persistently infect the ferret stomach[J]. Infect. Immun., 2003, 71(5): 2350-2355.
|
| [19] |
O'TOOLE P W, SNELLING W J, CANCHAYA C, et al.. Comparative genomics and proteomics of Helicobacter mustelae, an ulcerogenic and carcinogenic gastric pathogen[J/OL]. BMC Genomics, 2010, 11: 164[2025-06-06]. .
|
| [20] |
FOX J G, DANGLER C A, SAGER W, et al.. Helicobacter mustelae-associated gastric adenocarcinoma in ferrets (Mustela putorius furo)[J]. Vet. Pathol., 1997, 34(3): 225-229.
|
| [21] |
GOINEAU S, ROMPION S, GUILLAUME P, et al.. Using telemetry to Automate the detection of Emesis in the ferret: new vistas for delayed Emesis assessment[J]. J. Pharmacol. Toxicol. Methods, 2013, 68(1): 160-165.
|
| [22] |
LEMPEL A A, NIELSEN K J. Ferrets as a model for higher-level visual motion processing[J]. Curr. Biol., 2019, 29(2): 179-191.
|
| [23] |
MEDINA A E, FOXWORTHY W A, KEUM D, et al.. Development of multisensory processing in ferret parietal cortex[J]. Eur. J. Neurosci., 2023, 58(5): 3226-3238.
|
| [24] |
JOSHI N, NG W Y, THAKKAR K, et al.. Temporal coherence shapes cortical responses to speech mixtures in a ferret cocktail party[J/OL]. Commun. Biol., 2024, 7(1): 1392[2025-06-06]. .
|
| [25] |
JACKSON C A, PEDUZZI J D, HICKEY T L. Visual cortex development in the ferret. I. genesis and migration of visual cortical neurons[J]. J. Neurosci., 1989, 9(4): 1242-1253.
|
| [26] |
SAWADA K, WATANABE M. Development of cerebral sulci and gyri in ferrets (Mustela putorius)[J]. Congenit. Anomalies, 2012, 52(3): 168-175.
|
| [27] |
GILARDI C, KALEBIC N. The ferret as a model system for neocortex development and evolution[J/OL]. Front. Cell Dev. Biol., 2021, 9: 661759[2025-06-06]. .
|
| [28] |
MAJKOWSKI J. Drug effects on afterdischarge and seizure threshold in lissencephalic ferrets: an epilepsy model for drug evaluation[J]. Epilepsia, 1983, 24(6): 678-685.
|
| [29] |
SCHWERIN S C, CHATTERJEE M, IMAM-FULANI A O, et al.. Progression of histopathological and behavioral abnormalities following mild traumatic brain injury in the male ferret[J]. J. Neurosci. Res., 2018, 96(4): 556-572.
|
| [30] |
HASLING T A, GIERDALSKI M, JABLONSKA B, et al.. A radialization factor in normal cortical plate restores disorganized radial Glia and disrupted migration in a model of cortical dysplasia[J]. Eur. J. Neurosci., 2003, 17(3): 467-480.
|
| [31] |
SCHWERIN S C, HUTCHINSON E B, RADOMSKI K L, et al.. Establishing the ferret as a gyrencephalic animal model of traumatic brain injury: optimization of controlled cortical impact procedures[J]. J. Neurosci. Methods, 2017, 285: 82-96.
|
| [32] |
GOODFELLOW M J, HONG L E, PISKOUN B, et al.. Behavioral assessment of well-being in the naïve laboratory ferret (Mustela putorius furo)[J/OL]. Sci. Rep., 2024, 14(1): 30119[2025-06-06]. .
|
| [33] |
JIMENEZ I A, CRANEY M C, PAINTER M C, et al.. Behavioral evaluation of laboratory-housed ferrets (Mustela putorius furo) in different enclosure sizes[J]. J. Am. Assoc. Lab. Anim. Sci., 2023, 62(5): 382-394.
|
| [34] |
MUZUMDAR M D, TASIC B, MIYAMICHI K, et al.. A global double-fluorescent Cre reporter mouse[J]. Genesis, 2007, 45(9): 593-605.
|
| [35] |
HAYASHI S, MCMAHON A P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse[J]. Dev. Biol., 2002, 244(2): 305-318.
|
| [36] |
YU M, SUN X, TYLER S R, et al.. Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus[J/OL]. Sci. Rep., 2019, 9(1): 1971[2025-06-06]. .
|
| [37] |
YUAN F, GASSER G N, LEMIRE E, et al.. Transgenic ferret models define pulmonary ionocyte diversity and function[J]. Nature, 2023, 621(7980): 857-867.
|
| [38] |
高维崧,窦金萍,韦双,等.CRISPR/Cas系统的分类及研究现状[J].生物技术进展,2022,12(4):532-538.
|
|
GAO W S, DOU J P, WEI S, et al.. Classification and research status of CRISPR/cas systems[J]. Curr. Biotechnol., 2022, 12(4): 532-538.
|
| [39] |
王阿利,刘江东.CRISPR/Cas系统在斑马鱼中的研究进展[J].生物技术进展,2023,13(4):485-491.
|
|
WANG A L, LIU J D. Research progress on the CRISPR/Cas system in zebrafish[J]. Curr. Biotechnol., 2023, 13(4): 485-491.
|
| [40] |
张笑天,王智,朱鹏宇,等.一种基于定量PCR的CRISPR/Cas9基因编辑作物快速检测方法的研究[J].生物技术进展,2023,13(6):907-912.
|
|
ZHANG X T, WANG Z, ZHU P Y, et al.. A rapid detection method based on qPCR for CRISPR/Cas9 edited crops[J]. Curr. Biotechnol., 2023, 13(6): 907-912.
|
| [41] |
ROMMENS J M, IANNUZZI M C, KEREM B, et al.. Identification of the cystic fibrosis gene: chromosome walking and jumping[J]. Science, 1989, 245(4922): 1059-1065.
|
| [42] |
STOLTZ D A, MEYERHOLZ D K, WELSH M J. Origins of cystic fibrosis lung disease[J]. N. Engl. J. Med., 2015, 372(16): 1574-1575.
|
| [43] |
王泓恺,王俞杰,赵潇涵,等.囊性纤维化基因治疗研究进展[J].生物技术进展,2024,14(5):813-819.
|
|
WANG H K, WANG Y J, ZHAO X H, et al.. Research progress on cystic fibrosis gene therapy[J]. Curr. Biotechnol., 2024, 14(5): 813-819.
|
| [44] |
SUN X, YAN Z, YI Y, et al.. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets[J]. J. Clin. Invest., 2008, 118(4): 1578-1583.
|
| [45] |
SUN X, OLIVIER A K, LIANG B, et al.. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets[J]. Am. J. Respir. Cell Mol. Biol., 2014, 50(3): 502-512.
|
| [46] |
EVANS I A, SUN X, LIANG B, et al.. In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets[J/OL]. JCI Insight, 2024, 9(8): e157229[2025-06-06]. .
|
| [47] |
JOHNSON M B, SUN X, KODANI A, et al.. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size[J]. Nature, 2018, 556(7701): 370-375.
|
| [48] |
WANG W, YIN C, WEN S, et al.. DCX knockout ferret reveals a neurogenic mechanism in cortical development[J/OL]. Cell Rep., 2024, 43(8): 114508[2025-06-06]. .
|