| [1] |
SUNG H, FERLAY J, SIEGEL R L, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J. Clin., 2021, 71(3): 209-249.
|
| [2] |
LIU S C, ZHANG H. Early diagnostic strategies for colorectal cancer[J]. World J. Gastroenterol., 2024, 30(33): 3818-3822.
|
| [3] |
SIEGEL R L, WAGLE N S, CERCEK A, et al.. Colorectal cancer statistics, 2023[J]. CA A Cancer J. Clin., 2023, 73(3): 233-254.
|
| [4] |
WIRBEL J, PYL P T, KARTAL E, et al.. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer[J]. Nat. Med., 2019, 25(4): 679-689.
|
| [5] |
YACHIDA S, MIZUTANI S, SHIROMA H, et al.. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer[J]. Nat. Med., 2019, 25(6): 968-976.
|
| [6] |
LIU N N, JIAO N, TAN J C, et al.. Multi-Kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts[J]. Nat. Microbiol., 2022, 7(2): 238-250.
|
| [7] |
THOMAS A M, MANGHI P, ASNICAR F, et al.. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation[J]. Nat. Med., 2019, 25(4): 667-678.
|
| [8] |
XU C, FAN L, LIN Y, et al.. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization[J/OL]. Gut Microbes, 2021, 13(1): 1980347[2025-05-09]. .
|
| [9] |
COKER O O, LIU C, WU W K K, et al.. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers[J/OL]. Microbiome, 2022, 10(1): 35[2025-05-09]. .
|
| [10] |
LOPÈS A, BILLARD E, CASSE A H, et al.. Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer[J]. Int. J. Cancer, 2020, 146(11): 3147-3159.
|
| [11] |
ULGER TOPRAK N, YAGCI A, GULLUOGLU B M, et al.. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer[J]. Clin. Microbiol. Infect., 2006, 12(8): 782-786.
|
| [12] |
CHANG C W, LEE H C, LI L H, et al.. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer[J/OL]. Int. J. Mol. Sci., 2020, 21(2): 386[2025-05-09]. .
|
| [13] |
WANG N, FANG J Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer[J]. Trends Microbiol., 2023, 31(2): 159-172.
|
| [14] |
YANG Y, WENG W, PENG J, et al.. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21[J]. Gastroenterology, 2017, 152(4): 851-866.
|
| [15] |
CAO Y, WANG Z, YAN Y, et al.. Enterotoxigenic bacteroidesfragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p [J]. Gastroenterology, 2021, 161(5): 1552-1566.
|
| [16] |
PLEGUEZUELOS-MANZANO C, PUSCHHOF J, ROSENDAHL H A, et al.. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli [J]. Nature, 2020, 580(7802): 269-273.
|
| [17] |
SALESSE L, LUCAS C, HOANG M H T, et al.. Colibactin-producing Escherichia coli induce the formation of invasive carcinomas in a chronic inflammation-associated mouse model[J/OL]. Cancers, 2021, 13(9): 2060[2025-05-09]. .
|
| [18] |
CHEN H, TONG T, LU S Y, et al.. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis[J]. Cell Metab., 2023, 35(4): 651-666.
|
| [19] |
GUR C, IBRAHIM Y, ISAACSON B, et al.. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack[J]. Immunity, 2015, 42(2): 344-355.
|
| [20] |
GUR C, MAALOUF N, SHHADEH A, et al.. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1[J/OL]. OncoImmunology, 2019, 8(6): e1581531[2025-05-09]. .
|
| [21] |
HU L, LIU Y, KONG X, et al.. Fusobacterium nucleatum facilitates M2 macrophage polarization and colorectal carcinoma progression by activating TLR4/NF-κB/S 100A9 cascade[J/OL]. Front. Immunol., 2021, 12: 658681[2025-05-09]. .
|
| [22] |
CHEN T, LI Q, WU J, et al.. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism[J]. Cancer Immunol. Immunother., 2018, 67(10): 1635-1646.
|
| [23] |
GEIS A L, HOUSSEAU F. Procarcinogenic regulatory T cells in microbial-induced colon cancer[J/OL]. Oncoimmunology, 2016, 5(4): e1118601[2025-05-09]. .
|
| [24] |
DZIUBAŃSKA-KUSIBAB P J, BERGER H, BATTISTINI F, et al.. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer[J]. Nat. Med., 2020, 26(7): 1063-1069.
|
| [25] |
JANS M, KOLATA M, BLANCKE G, et al.. Colibactin-driven colon cancer requires adhesin-mediated epithelial binding[J]. Nature, 2024, 635(8038): 472-480.
|
| [26] |
TESTA U, PELOSI E, CASTELLI G. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells[J/OL]. Med. Sci. 2018, 6(2): 31[2025-05-09]. .
|
| [27] |
JIANG S S, XIE Y L, XIAO X Y, et al.. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer[J]. Cell Host Microbe, 2023, 31(5): 781-797.
|
| [28] |
NOSHO K, SUKAWA Y, ADACHI Y, et al.. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer[J]. World J. Gastroenterol., 2016, 22(2): 557-566.
|
| [29] |
PARK H E, KIM J H, CHO N Y, et al.. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma[J]. Virchows Arch., 2017, 471(3): 329-336.
|
| [30] |
XIE Y, JIAO X, ZENG M, et al.. Clinical significance of Fusobacterium nucleatum and microsatellite instability in evaluating colorectal cancer prognosis[J]. Cancer Manag. Res., 2022, 14: 3021-3036.
|
| [31] |
AMITAY E L, KRILAVICIUTE A, BRENNER H. Systematic review: gut microbiota in fecal samples and detection of colorectal neoplasms[J]. Gut Microbes, 2018, 9(4): 293-307.
|
| [32] |
CONDE-PÉREZ K, AJA-MACAYA P, BUETAS E, et al.. The multispecies microbial cluster of Fusobacterium, Parvimonas, Bacteroides and Faecalibacterium as a precision biomarker for colorectal cancer diagnosis[J]. Mol. Oncol., 2024, 18(5): 1093-1122.
|
| [33] |
MIMA K, NISHIHARA R, QIAN Z R, et al.. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis[J]. Gut, 2016, 65(12): 1973-1980.
|
| [34] |
WU S, JRHEE K, ALBESIANO E, et al.. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses[J]. Nat. Med., 2009, 15(9): 1016-1022.
|
| [35] |
PNOUGAYRÈDE J, HOMBURG S, TAIEB F, et al.. Escherichia coli induces DNA double-strand breaks in eukaryotic cells[J]. Science, 2006, 313(5788): 848-851.
|
| [36] |
XU Y, ZHAO J, MA Y, et al.. The microbiome types of colorectal tissue are potentially associated with the prognosis of patients with colorectal cancer[J/OL]. Front. Microbiol., 2023, 14: 1100873[2025-05-09]. .
|
| [37] |
O'KEEFE S J D. Diet, microorganisms and their metabolites, and colon cancer[J]. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(12): 691-706.
|
| [38] |
JONES B V, BEGLEY M, HILL C, et al.. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome[J]. Proc. Natl. Acad. Sci. USA, 2008, 105(36): 13580-13585.
|
| [39] |
CHEN G, REN Q, ZHONG Z, et al.. Exploring the gut microbiome's role in colorectal cancer: diagnostic and prognostic implications[J/OL]. Front. Immunol., 2024, 15: 1431747[2025-05-09]. .
|
| [40] |
WU Y, ZHUANG J, ZHOU J, et al.. Prediction model of colorectal cancer (CRC) lymph node metastasis based on intestinal bacteria[J]. Clin. Transl. Oncol., 2023, 25(6): 1661-1672.
|
| [41] |
LIANG Q, CHIU J, CHEN Y, et al.. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer[J]. Clin. Cancer Res., 2017, 23(8): 2061-2070.
|
| [42] |
BAXTER N T, RUFFIN M T, ROGERS M A M, et al.. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions[J/OL]. Genome Med., 2016, 8(1): 37[2025-05-09]. .
|
| [43] |
HUANG Z, HUANG X, HUANG Y, et al.. Identification of KRAS mutation-associated gut microbiota in colorectal cancer and construction of predictive machine learning model[J/OL]. Microbiol. Spectr., 2024, 12(5): e0272023[2025-05-09]. .
|
| [44] |
MA M, ZHENG Z, LI J, et al.. Association between the gut microbiota, inflammatory factors, and colorectal cancer: evidence from Mendelian randomization analysis[J/OL]. Front. Microbiol., 2024, 15: 1309111[2025-05-09]. .
|